UNIVERSITI TEKNOLOGI MARA

TEXTURE ANALYSIS USING GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) FOR WATER QUALITY INDEX AT SUNGAI MUDA, KEDAH

NUR SYAHIRA BINTI RUSLEE

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor of Surveying Science and Geomatic** (Hons.)

Faculty of Architecture, Planning and Surveying

July 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Nur Syahira Binti Ruslee

Student I.D. No. : 2015241322

Programme : Degree of Science & Geomatics - AP220

Faculty : Architecture, Planning & Surveying

Texture Analysis Using Gray Level Co- Occurrence

Thesis/Dissertation Title: Matrix (GLCM) for Water Quality Index Sungai

Muda, Kedah.

Signature of Student :

Date : July 2019

ABSTRACT

The surface quality of an object is called the texture and the surface of any visible object is textured at certain scale. As well, the variation of light or dark patterns of various textures are indications for visual enjoying. Moreover, texture is a feature used as a border for images into the certain regions or places and it can be used to classify those regions. The texture provides the information in spatial arrangement of colours or intensities in an image. The aim of this project is to produce Gray Level Co-Occurrence Matrix (GLCM) mapping at Sungai Muda. The objective of this study is to generate the four texture parameters (contrast, entropy, correlation, and homogeneity) using the GLCM at Sungai Muda, Kedah and then produce the four maps of the classification based on the grey value own each parameter. Next, to identify the most significant parameter using regression analysis and mapping the distribution of WQI based on the most significant parameter. The in-situ data (water quality parameters) were obtained from Department of Environment Malaysia (DOE) and satellite image of Geo-Eye 1 with spatial resolution 0.5m was obtained from Agency Remote Sensing Malaysia (ARSM). The three software were used in this project such as ERDAS imagine, ENVI and ArcGIS. The results show four maps from the GLCM method and the most significant GLCM map will produces the distribution of the WQI map.

TABLE OF CONTENT

SUP	ERVISOR'S DECLARATION	iii
CON	FIRMATION BY PANEL OF EXAMINERS	iv
AUT	THOR'S DECLARATION	v
ABS	TRACT	vi
ACK	NOWLEDGEMENT	vii
TABLE (OF CONTENT	viii
LIST OF	TABLES	x
СНАРТЕ	ER ONE	1
INTRO	DDUCTION	1
1.1	Research Background	1
1.2	Problem Statement	1
1.3	Research Aim and Objective	2
1.4	Significance of Study	2
1.5	Scope Limitation of Study	2
СНАРТЕ	ER TWO	4
LITER	ATURE REVIEW	4
2.1	Overview	4
2.2	Texture Analysis of Gray Level Co- Occurrence Matrix (GLCM)	4
2.2	Water Quality	7
2.3	Classification of Water Quality	10
2.4	River Water Quality and Status	10
2.5	Satellite Sensor	11
СНАРТЕ	R THREE	13
METH	ODOLOGY	13
3.1	Introduction	13
3.2	Flowchart of the project	13
3.3	Data Collection	14
3.4	Data Processing	15
3.5	Result and analysis	21
СНАРТЕ	ER FOUR	22
RESUI	LT AND ANALYSIS	22
4.1	Introduction	22

4.2	Mapping Classification of GLCM at Sungai Muda, Kedah	22
4.3	Correlation Analysis	23
4.4	Regression Analysis	24
4.3	Mapping of the distribution of WQI	27
CHAPTER 5		29
CONCL	LUSION AND RECOMMENDATION	29
5.1	Introduction	29
5.2	Conclusion	29
5.3	Recommendation	29