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ABSTRACT

In this study, two series of mixed oxide tellurite based glasses with composition
80Te02-(20-x)Mn02-xFe203 (x = 5 mol% to 20 mol%) and 30Li20-4Mo03-(66
x)Te02-xV20S (x = 0.2-1.2 mol%) were prepared using melt-quenching method to
investigate their dielectric, AC conductivity, elastic and optical properties. For the
80Te02-(20-x)Mn02-xFe203 glass samples, the dielectric constant showed strong
variation with Fe203 at a frequency ~1 0 kHz, where c:' decreased to a minimum value
at x = 10 mol% before increasing for x>10%. The decrease in c:' may be attributed to
some form of hindrance effect on heavy dipoles caused by the mixed transition-ion
effect (MTE). Meanwhile, variation ofAC conductivity with Fe203 showed non-linear
increase for x :510 mol% before dropping to a minimum at 15 mol% Fe203. This result
is attributed to Anderson localization because of the disorder in the glass system. On
the other hand, DC conductivity for the same glass system showed a strong increase
for x :510 mol% Fe203 before reaching a saddle-like behavior between 10 mol % :5x
:515 mol%, followed by a large increase for x> 15 mol%. Independent longitudinal
modulus (CL), shear modulus (p,) and bulk modulus (Ke) showed increased values for
x :510 mol% with an anomalous drop at x = 15 mol% Fe203, followed by a large
increase at x > 15 mol%. The anomalous region between 10 mol% :5x :515 mol%
coincided with DC conductivity saddle-like region and is suggested to be related to the
MTE. Meanwhile, in the same region, optical band gap (Eopt) exhibited a maxima,
whereas refractive index showed a minima, thereby indicating a variation in
polarizability due to changes in concentration of bridging and non-bridging oxygens.
For the 30LhO-4Mo03-(66-x)Te02-xV20s glasses, the variation of AC conductivity
with V20S showed a non-linear increase for x :50.6 mol% before decreasing to a
minimum at 0.8 mol% V20S. The decrease in aAC is attributed to some forms of
blocking effect on Li+ ions caused by the mixed ionic-electronic (MIE) effect.
Meanwhile, dielectric constant showed a general increase for x :5 0.6 before an
anomalous decrease at x = 0.8 mol% V20S, which was followed by a large increase at
x> 0.8 mol%. The decrease at x = 0.8 mol% coincided with the aAC drop at the same
location. This decrease was also suggested to be related to the MIE that induced a
blocking effect, which caused the restricted dipole movement. Meanwhile, DC
conductivity showed initial weak increase for x :50.6 mol% V20S before decreasing
sharply at x = 0.8 mol% followed by a large increase for x> 0.8 mol%. Independent
longitudinal modulus (CL), shear modulus (p,) and related elastic modulus also
exhibited non-linear behavior where their values decreased to a minimum at x = 0.8
mol% before increasing beyond x = 0.8 mol% with the addition ofV20s. The decrease
in elastic modulus for x :50.8 mol% indicated a decrease in stiffness and rigidity ofthe
glasses due to increase in non-bridging oxygen (NBO) contributed by Te03 and M003
which weakened the glass network. Subsequently, a large increase at x> 0.8 mol% is
suggested to be due the increase in BO contributed by VOs together with the formation
of strong covalent V-0 bond. The anomalous region at x = 0.8 mol% which coincided
with the DC conductivity minimum region is suggested to be related to the (MIE)
effect. Meanwhile, in the same region, optical band gap (Eopt) and refractive index (n)
exhibited an off-trend behavior indicating variation in polarizability due to changes in
concentration ofbridging and non-bridging oxygen.
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CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF RESEARCH

Oxide glasses have been extensive ly studied because oftheir unique prop erties

and potential applica tions in many indu strie s. Intere stingly, among the oxide glasses,

tellurium oxide-bas ed glasses have drawn technical interest because of their low

meltin g point (Ca rdillo, Mont ani , & Frechero, 2010 ; Mohamed, Ahmad, & Aly, 2012;

Redd y & Anave kar, 2008; Saddeek, 2005; Sidke y & Gaafar , 2004; Sidkey, R. El

Ma llawa ny, Na khla, & El-Moneim, 1997) and high glass forming abilit y (Sidke y, El

Mon eim , & El-Latif, 1999; Souri , 2010 ; Souri , 2011b). Tellurium oxide-based glasses

are non-h ygro scopic, unlik e phosphate and borate glas ses (Mallawany, 1998). These

glasses possess a high refractive index (El-Mallawany, Abdalla, & Ahmed, 2008 ; El

Mall awan y, Abousehl y, & You sef, 2000 ; Khafagy, El-Adawy, Higaz y, El-Rabaie, &

Eid, 2008b; Lakshminarayana , Yang , & Qiu , 2009 ; Ovcharenko & Smirno va, 2001 ;

Yousef, Hotze l, & Russel , 2007), significant third-order nonlinear optical

susceptibility (Xu et al. , 2011 ; Yousef et al., 2007) , low maximum phonon energy

(Nandi & Jose, 2006), and high dielectric constant (Ahmad, Yousef, & Moustafa,

2006 ; Kumar & Veeraiah, 1998; Sankarappa, Kumar, Devidas, Nagaraj a, &

Ramakrishnareddy, 2008) , which make these glasses a potential material for optical

devices. In addition, tellurite glasse s are stable against devitrification, non-toxic, and

resistant to mo isture for long periods (Gandhi, Mohan, & Veeraiah, 2011). The basic

structure of the glass is characterized by a Te04 trigonal bipyramid (tbp) and Te03

trigon al pyramid (tp) unit structure with a lone pair at the equatorial position (Sabadel

et al., 1997). Intere stingly, Te02 is a recognized conditional glass former , which

requires the addition of a modifier oxide , such as alkali , alkaline earth , and transition

metal oxides or other glass formers (Moraes et al. , 2010 ; Rajendran, Palani velu ,

Chaudhuri , & Goswami , 2003b).

Recent studies on the spectroscopic, mechanical, and electrical properties of

tellurite-based glasses mixed with different network formers and modifiers are

available in the literature (Azianty, Yahya, & Halimah, 2012 ; Szu & Chang, 2005 ;
1
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