UNIVERSITI TEKNOLOGI MARA

DIELECTRIC, ELASTIC AND OPTICAL PROPERTIES OF 80TeO₂-(20-x)MnO₂-xFe₂O₃ AND 30Li₂O-4M0O₃-(66-x)TeO₂-xV₂O₅ MIXED OXIDE TELLURITE GLASSES IN THE CONDUCTIVITY ANOMALY REGION

ROSDIYANA BINTI HASHAM@HISAM

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Applied Sciences

March 2017

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This project has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Rosdiyana Binti Hasham @ Hisam
Student ID No.	:	2013446266
Programme	:	Doctor of Philosophy (Science) - AS950
Faculty	:	Applied Sciences
Thesis Title	:	Dielectric, Elastic and Optical Properties
		of 80TeO ₂ -(20-x)MnO ₂ -xFe ₂ O ₃ and
		30Li ₂ O-4MoO ₃ -(66-x)TeO ₂ - xV ₂ O ₅
		Mixed Oxide Tellurite Glasses in the

Conductivity Anomaly Region

Signature of Student Date Rent

March 2017

ABSTRACT

In this study, two series of mixed oxide tellurite based glasses with composition $80\text{TeO}_2(20-x)\text{MnO}_2-x\text{Fe}_2\text{O}_3$ (x = 5 mol% to 20 mol%) and $30\text{Li}_2\text{O}_2-4\text{MoO}_3-(66$ x)TeO₂-xV₂O₅ (x = 0.2-1.2 mol%) were prepared using melt-quenching method to investigate their dielectric, AC conductivity, elastic and optical properties. For the 80TeO₂-(20-x)MnO₂-xFe₂O₃ glass samples, the dielectric constant showed strong variation with Fe₂O₃ at a frequency ≥ 10 kHz, where ε' decreased to a minimum value at x = 10 mol% before increasing for x > 10%. The decrease in ε' may be attributed to some form of hindrance effect on heavy dipoles caused by the mixed transition-ion effect (MTE). Meanwhile, variation of AC conductivity with Fe₂O₃ showed non-linear increase for $x \le 10 \mod \%$ before dropping to a minimum at 15 mol% Fe₂O₃. This result is attributed to Anderson localization because of the disorder in the glass system. On the other hand. DC conductivity for the same glass system showed a strong increase for $x \leq 10 \mod \%$ Fe₂O₃ before reaching a saddle-like behavior between 10 mol $\% \leq x$ $\leq 15 \text{ mol}\%$, followed by a large increase for x > 15 mol%. Independent longitudinal modulus (C_1), shear modulus (μ) and bulk modulus (K_e) showed increased values for $x \leq 10 \text{ mol}\%$ with an anomalous drop at x = 15 mol% Fe₂O₃, followed by a large increase at x > 15 mol%. The anomalous region between 10 mol% $\leq x \leq 15$ mol% coincided with DC conductivity saddle-like region and is suggested to be related to the MTE. Meanwhile, in the same region, optical band gap (E_{opt}) exhibited a maxima, whereas refractive index showed a minima, thereby indicating a variation in polarizability due to changes in concentration of bridging and non-bridging oxygens. For the 30Li₂O-4MoO₃-(66-x)TeO₂-xV₂O₅ glasses, the variation of AC conductivity with V₂O₅ showed a non-linear increase for $x \leq 0.6$ mol% before decreasing to a minimum at 0.8 mol% V₂O₅. The decrease in σ_{AC} is attributed to some forms of blocking effect on Li⁺ ions caused by the mixed ionic-electronic (MIE) effect. Meanwhile, dielectric constant showed a general increase for $x \leq 0.6$ before an anomalous decrease at $x = 0.8 \text{ mol}\% \text{ V}_2\text{O}_5$, which was followed by a large increase at x > 0.8 mol%. The decrease at x = 0.8 mol% coincided with the σ_{AC} drop at the same location. This decrease was also suggested to be related to the MIE that induced a blocking effect, which caused the restricted dipole movement. Meanwhile, DC conductivity showed initial weak increase for $x \leq 0.6 \text{ mol}\% \text{ V}_2\text{O}_5$ before decreasing sharply at x = 0.8 mol% followed by a large increase for x > 0.8 mol%. Independent longitudinal modulus (C₁), shear modulus (μ) and related elastic modulus also exhibited non-linear behavior where their values decreased to a minimum at x = 0.8mol% before increasing beyond x = 0.8 mol% with the addition of V₂O₅. The decrease in elastic modulus for $x \leq 0.8$ mol% indicated a decrease in stiffness and rigidity of the glasses due to increase in non-bridging oxygen (NBO) contributed by TeO3 and MoO3 which weakened the glass network. Subsequently, a large increase at x > 0.8 mol% is suggested to be due the increase in BO contributed by VO5 together with the formation of strong covalent V-O bond. The anomalous region at x = 0.8 mol% which coincided with the DC conductivity minimum region is suggested to be related to the (MIE) effect. Meanwhile, in the same region, optical band gap (E_{opt}) and refractive index (n)exhibited an off-trend behavior indicating variation in polarizability due to changes in concentration of bridging and non-bridging oxygen.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	XX

CHAPTER ONE: INTRODUCTION

1.1	Background of Research	1
1.2	Problem Statements of Study	5
1.3	Objectives	9
1.4	Significance of the Research	10

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	11
2.2	Glass	11
	2.2.1 Definitions and Characteristics of Glass	11
	2.2.2 Zachariasen's Rules	13
	2.2.3 Classification of Oxide Glass	14
2.3	Tellurite Glass	15
	2.3.1 Structure of Tellurite Glass	16
	2.3.2 Structural Transformation of TeO2	18
	2.3.3 X-Ray Diffraction (XRD) Pattern for TeO2 glass	20
2.4	Studies of Fourier Transform Infrared (FTIR) Spectroscopy on Tellurite	21
	Glass System	

CHAPTER ONE INTRODUCTION

1.1 BACKGROUND OF RESEARCH

Oxide glasses have been extensively studied because of their unique properties and potential applications in many industries. Interestingly, among the oxide glasses, tellurium oxide-based glasses have drawn technical interest because of their low melting point (Cardillo, Montani, & Frechero, 2010; Mohamed, Ahmad, & Aly, 2012; Reddy & Anavekar, 2008; Saddeek, 2005; Sidkey & Gaafar, 2004; Sidkey, R. El-Mallawany, Nakhla, & El-Moneim, 1997) and high glass forming ability (Sidkey, El-Moneim, & El-Latif, 1999; Souri, 2010; Souri, 2011b). Tellurium oxide-based glasses are non-hygroscopic, unlike phosphate and borate glasses (Mallawany, 1998). These glasses possess a high refractive index (El-Mallawany, Abdalla, & Ahmed, 2008; El-Mallawany, Abousehly, & Yousef, 2000; Khafagy, El-Adawy, Higazy, El-Rabaie, & Eid, 2008b; Lakshminarayana, Yang, & Qiu, 2009; Ovcharenko & Smirnova, 2001; Yousef, Hotzel, & Rüssel, 2007), significant third-order nonlinear optical susceptibility (Xu et al., 2011; Yousef et al., 2007), low maximum phonon energy (Nandi & Jose, 2006), and high dielectric constant (Ahmad, Yousef, & Moustafa, 2006; Kumar & Veeraiah, 1998; Sankarappa, Kumar, Devidas, Nagaraja, & Ramakrishnareddy, 2008), which make these glasses a potential material for optical devices. In addition, tellurite glasses are stable against devitrification, non-toxic, and resistant to moisture for long periods (Gandhi, Mohan, & Veeraiah, 2011). The basic structure of the glass is characterized by a TeO₄ trigonal bipyramid (tbp) and TeO₃ trigonal pyramid (tp) unit structure with a lone pair at the equatorial position (Sabadel et al., 1997). Interestingly, TeO₂ is a recognized conditional glass former, which requires the addition of a modifier oxide, such as alkali, alkaline earth, and transition metal oxides or other glass formers (Moraes et al., 2010; Rajendran, Palanivelu, Chaudhuri, & Goswami, 2003b).

Recent studies on the spectroscopic, mechanical, and electrical properties of tellurite-based glasses mixed with different network formers and modifiers are available in the literature (Azianty, Yahya, & Halimah, 2012; Szu & Chang, 2005;