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ABSTRACT

THERMAL PROPERTIES AND MORPHOLO GIES OF POLY(ETI-IYLENE

TEREPHTHALAT E) IN BLENDS WITH EPOXIDIZED NATURAL RUBBERS

Thermal properties and morphologies for polymer blends of poly(ethylene tcrephthalatc)

(PET) and cpoxidized natural rubber with 25 mole % (EN R-25) and 50 mole % epoxy

content (ENR-50) were studied by using differential scanning calorimete r (OSC) and

polarizing optical microscope (POM). The blends were prepared by precipitation

method. Immiscibil ity of the components is revealed by observa tion of two glass

transit ion temperatures (1'g) that correspond to that of the neat constituents. Equilibrium

melting points (1'mO) of PET in blends was determin ed by app lying Hoffman-Weeks

step-wise anneal ing procedure . The Tmo of neat PET and PET in the blends are around

260 °C. The degree of crys tallinity of PET in blends with ENR-25 and ENR-50 remains

constant. The rate of crystallization of PET in blends is characterized by the reciprocal

half time (Ius-') . It displays an Arrhenius-like behavior with respect to temperature and it

stays constant at isothermal crys tallization temperature, T, = const as long as PET is in

excess . Rate of crystallizat ion of PET in the blends decreases exponentially as the T;

increases. Dispersed phase of ENR-25 and ENR-50 in the matrix of PET can be

observed when the content of PET in excess .
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CHAPTER 1

INTRODUCTION

1.1 General

Polymer or macromolecule is a large molecule built by covalently bonded above 10 or

20 monomers or the Constitutional Repeating Unit (CRU) in any possible pattern [1 - 3].

Accepta nce of the macromolecular hypothesis came about in the 1920's , largely

because of the efforts of Staudinger (1920) [4] who proved the existence of large long­

chain structures for polystyrene, rubber and polyoxymethylene. The bloom of the

demand of polymeric materials is broadly extended with applications in many areas and

its increase has been prompt since after Second World War.

In recent years, huge demand for engineering plastics specialty elastomers, fibers and

other polymeric materials with improved properties and processbility of the materials

may be satisfied by changes in macromolecular design of the materials [5]. Hence, the

developments of new polymeric materials through regulating the macromolecular

architecture [6] and/or by blending with existing polymers [7 - 10] have attained much

attention for the academic purposes as well as for the industries [11 - 12].

1.2 Polymer Blending

Most of the studies on polymer blends focused on two aspects which are first by

fundamental understanding of theoretical aspect then followed by the technological
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