UNIVERSITI TEKNOLOGI MARA

ZOOPLANKTON COMMUNITY STRUCTURE OF SUNGAI LUKUT AND ITS ESTUARY, NEGERI SEMBILAN

SITI FAIRUS BINTI MUSA

Dissertation submitted in partial fulfillment of the requirements for the degree of **Master of Science**

Faculty of Applied Science

May 2016

AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Siti Fairus Binti Musa
Student I.D. No.	:	2014239852
Programme	:	Master of Science (Applied Biology) - AS730
Faculty	:	Faculty of Applied Science
Dissertation Title	:	Zooplankton Community Structure of Sungai
		Lukut, and Its Estuary Negeri Sembilan
Signature of Student	:	A MARINA
Date	:	May 2016

ABSTRACT

The zooplankton community structure of Sungai Lukut, Negeri Sembilan was studied between February to April 2015. Sampling stations included the river mouth, middle reaches and upper reaches of the river. Sampling was conducted utilizing a tow net with a 140 µm-mesh and a ring bridlewith a 30 cm mouth diameter. The zooplankton sampling was conducted during floods and ebbs for both spring and neap tides. In situ salinity ranged from 9.21 to 35.59 parts per thousand; dissolved oxygen ranged from 2.99 to 8.57mg/l; temperature ranged from 28.63°C to 32.67°C and pH ranged from 6.61 to 9.87. Zooplankton density was significantly different (p<0.05) between rivermouth (47976±4025 ind/m³), middle reaches (36647±5948ind/m³) and the upper reaches (27652±4425ind/m³) sampling sites. Mean zooplankton density during neap 63200±14874ind/m3and49042±21874ind/m3during spring tide: tide was 26826±7251ind/m³during floods and 29478±11764ind/m³during ebbs. Sampling site, tide and phase of tide showed significant difference for water physicochemical parameters (p<0.05). Shannon's H' ranged from 1.87 (upper reaches) to 2.26 (river mouth); Margalef's d ranged from 5.58 (river mouth) to 5.68 (middle reaches); and Pielou's J' ranged from 0.63 (upper reaches) to 0.74 (middle reaches). Shannon's index. Margalef's richness and Pielou's evenness was higher during spring tide (H'=2.19, d=5.27, J'=0.74); Shannon's index and Pielou's evenness was higher during ebbs (H'=2,15, J'=0,75) while Margalef's richness was higher during floods (d=5.7). PCA ordinations showed most of the zooplankton were found at all sampling site with difference abundance while CCA ordination showed distribution and abundance of zooplankton were more affected by salinity, pH and dissolved oxygen.

TABLE OF CONTENTS

Page

CON	FIRMATION BY PANEL OF EXAMINERS	ii	
AUTI	HOR'S DECLARATION	iii	
ABST	FRACT	iv	
ACK	NOWLEDGEMENT	v	
TAB	LE OF CONTENTS	vi	
LIST	OF TABLES	viii	
LIST	OF FIGURES	x	
LIST	OF SYMBOLS	xi	
LIST OF ABBREVIATIONS			
CHA	PTER ONE: INTRODUCTION	1	
1.1	Research Background	1	
1.2	Problem Statement	2	
1.3	Hypothesis	2	
1.4	Significance of Study	2	
1.5	Objectives of Study	3	
1.6	Scope and Limitations	3	
СНА	PTER TWO: LITERATURE REVIEW	4	
2.1	Water Physicochemical Parameter	4	
2.2	Zooplankton	6	
2.3	Habitat Heterogeneity of Zooplankton	7	
2.4	Role of Zooplankton in the Food Web	9	
2.5	The Taxonomic Records and Biodiversity of Zooplankton in Malaysia	10	
2.6	The Abundance and Distribution of Zooplankton in Malaysia	11	
СНА	PTER THREE: RESEARCH METHODOLOGY	14	
3.1	Material	14	
	3.1.1 Raw Materials	14	
	3.1.2 Chemicals	14	
	3.1.3 Apparatus	14	

CHAPTER ONE INTRODUCTION

1.1 RESEARCH BACKGROUND

Water bodies including lakes and rivers are frequently flow through urbanized areas and usually act as the final collectors of diverse types of effluents. Urbanization impacts the hydrology, geomorphology and water quality of water bodies (Baer and Pringle, 2000) and is far stronger than the impacts caused by agriculture and deforestation (Paul and Meyer, 2001). Rivers, lakes and coasts are habitats for many aquatic organisms and impacts on these systems will be translated to the organisms that are dependent on them.

Sungai Lukut is one of the major rivers in Negeri Sembilan which is important for potable water, fishing and industry as well as for crop irrigation. Anthropogenic activities such as prawn farms, industrial estates, agriculture as well as mangrove removal along Sg. Lukut adds waste to the river. The disposal of municipal waste and industrial effluents is also channeled to the river without proper management. Further development in Sg. Lukut for instance, former Gelam (*Melaleuca cajuputi*) swamp and forested headland that was developed for housing in 1980's and old mining ponds had been converted for aquaculture which progressively altered its ecosystem (Integrated Shoreline Management Plan, Negeri Sembilan, 2007).

The zooplankton are planktonic organisms inhabiting water bodies such as lakes, rivers, coastal and marine environments. Zooplankton are important indicators of the impact of pollution in marine communities or in river estuaries (Blanc, Leveau, and Szekielda, 1969). Their distribution and abundance is linked to disturbances such as agricultural eutrophication, industrial and domestic pollutants and sewage which can alter ecosystem function. The zooplankton are useful bioindicators to characterize anthropogenic impacts of pollution, such as heavy metals (Stemberger and Chen, 1998), contamination (Yan, Keller, Somers, Pawson, and Girard, 1996), nutrient loading (Dodson, 1992) and acidification (Armorek and Korman, 1993).