UNIVERSITI TEKNOLOGI MARA

BIOTRANSFORMATION OF SELECTED NATURAL PRODUCTS AND PHYTOCHEMISTRY OF FERMENTED Alnus sieboldiana AND LIVERWORT Conocephalum conicum

NURUNAJAH BINTI AB GHANI

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** (Science)

Faculty of Applied Sciences

August 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurunajah binti Ab Ghani
Student I.D. No	:	2011186911
Programme	:	Doctor of Philosophy (Science) –AS950
Faculty	:	Applied Sciences
Thesis Title	:	Biotransformation of Selected Natural Products and
		Phytochemistry of Fermented Alnus sieboldiana
Signature of Student Date	:	and Liverwort <i>Conocephalum conicum</i> August 2018

ABSTRACT

Biotransformation is a process by which organic compounds are transformed into its aided by organisms such as fungi, derivatives, bacteria and enzymes. Biotransformations are used as a valuable strategy to diversify chemistry of compounds particularly natural products. The aim of this work is to explore biotransformation on natural products using several concepts, in order to obtain varieties of natural entities. This thesis presents biotransformation studies on two classes of bioactive natural products represented by an anthraquinone and chalcones, followed by *in-situ* transformation of chemical constituents of male flowers by fungus, and changes in biosynthetic pathways when Japanese liverwort is grown under stressed condition. Small scale biotransformation of the bioactive anthraquinone nordamnacanthal 8 using 19 selected strains revealed its sturdy nature where only Absidia coerulea managed to convert the compound into lucidin 143. Then, in-labo biotransformation was pursued with microbial transformation of hydroxychalcones; 4'hydroxychalcone 145 and 4-hydroxychalcone 146 by Aspergillus niger. After 7 days of fermentation, four dihydrochalcone derivatives were obtained. Isolated products were identified as 4'-hydroxydihydrochalcone 147, 4-hydroxydihydrochalcone 149, 3',4'-dihydroxydihydrochalcone 148 and 3,4-dihydroxydihydrochalcone 150, resulting from bioreduction at α,β -unsaturated double bond of hydroxychalcone and hydrogenation reaction at the activated phenyl rings. On the other hand, in-situ transformation of Alnus sieboldiana male flowers by fungus Penicillium sp. is of interest due to the common infection causing significant change in the smell. Infected male flowers were allowed to ferment for six months. Analysis of the volatile components of the fermented male flowers revealed β-phenylethyl cinnamate 174 (10%) as a major component followed by 2-phenylethanol 170 (8.7%). The level of 2phenylethanol 170 in the fermented male flowers is three times higher as compared to the fresh male flowers (2.7%) which explained the unpleasant odor of fermented male flowers. Yashabushidiol A 72, yashabushidiol B 73 and naringenin 69, which were known to be original constituents of the fresh male flowers, were successfully isolated from the ethyl acetate extract of fermented male flowers. Additional transformation products isolated includes six flavonoids kaempferol 195, quercetin 196, pinocembrin dimethyl ether 197, trans-3-hydroxy-5,7-dimethoxyflavanone 198, galangin-5,7dimethyl ether 199 and 5-methoxy-3,6,7-trihydroxyflavanone 200. Detailed analysis of the metabolic pathways of isolated compounds suggested flavanone-3-hydroxylase, flavonoid-3'-hydroxylase and plant-O-methyl-transferases enzymes were released due to the enzymatic action of fungus Penicillium sp. When Japanese liverwort Conocephalum conicum was grown under stressed condition, the biosynthesis pathways taking place in the plant seem to be affected resulting in confusions from chemotype perspective. Under normal growth conditions, (+)-bornyl acetate 94 is the major component in the type-II C. conicum while cis-methyl cinnamate 204 and transmethyl cinnamate 87 should not be present. However, when grown under stressed conditions, trans-methyl cinnamate 87 was found to be present as the major component instead of (+)-bornyl acetate 94, indicating activation of shikimate pathway along with mevalonic acid pathway. Thus, it is suggested that the stress C. conicum to be categorized under 'trans-methyl cinnamate > bornyl acetate' subtype, since there were dual biogenetic pathways present at stressed condition.

ACKNOWLEDGEMENT

"In the name of Allah, the most Gracious and Merciful"

Most and foremost, my utmost appreciation to Prof Dr. Nor Hadiani Ismail for her guidance, assistance, encouragement and support, without those this thesis would not be possible. Throughout the years, I have learnt through her teaching and guidance and most importantly through her great examples and wisdom. I am equally indebted to Prof Dr. Yoshinori Asakawa for his kind assistance and wise advice, encouragement, support and opportunity given especially during my 1.5 years stay at Tokushima. It is great honor for me to work together with both of them throughout these meaningful years of my life.

My heartfelt thanks to my lovely family for their faith and love gave me the strength to make it through. This study is especially dedicated to my parents (Mr. Ab Ghani and Mdm. Bunga Endot) and siblings (Ida, Anah, Ruby, Mamat, Imah, Pudin, Najmi and Arah), who always believe in my big dream. Their scarification and unconditional love has inspired me in achieved triumph.

It is my great pleasure to acknowledge professors and lectures of the Faculty of Applied Sciences (FSG), Atta-ur-Rahman Institute for Natural Product Discovery (Aurins) and Tokushima Bunri University, Japan (TBU) for the brilliant ideas and kind assistance throughout this study. I am grateful thank to Prof Dr. Yoshiaki Noma for his guidance, assistance and advice on biotransformation techniques.

My deepest gratitude also goes to Dr. Kenmoku, Dr. Okamoto, Dr. Umeyama, Dr. Matsumoto, Dr. Yoshida, Dr. Ito, Dr. Nagashima, Dr. Yamamoto and students from Yakka Laboratory of Tokushima Bunri University, Japan, for assisting me with my biotransformation works. Not forgotten special thanks to postdoctoral: Dr. Virginia (Poland), Dr. Danka and Dr. Miro (Serbia) and visiting professor: Prof G. A. Cordell who assist and encourage me during my research attachment at TBU. I wish to equally thank to my friends from Tokushima University; Lysa Zainordin, Azira Aziz, Siti Nadiah, Nurul Amira, Nizam Mazenan, Zamri Zainal, Madihah Maharof, Faiz Farhan, Faizal Rahim and Rahimah Hamid for their kind company and assistance during my one year and five months stay in Tokushima Prefecture.

I would like to thank my fellow postgraduate students; Noraini Kasim, Vicky Bihud, Fauziah Abdullah, Fazlina Edayah, Halimatun Saadiah, Nik Khairunissa, Farah NurAin, Siti Sarwana and many others for the effort, encouragement and enthusiasm demonstrated throughout.

This project would not have been possible without the support from the technical assistances and support staff from FSG, Aurins and TBU. Special thanks to Universiti Teknologi MARA and Ministry of Education, particularly in the award of scholarship (Program Ahli Sains dan Penyelidik Muda-PSPM) and also grant awarded (FRGS/1/2013/ST01/UITM/02/4). Special thanks also to all those names that not mentioned here but were involved directly or indirectly during the completion of my study. To all, thanks, thanks and ever thanks.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	х
LIST OF FIGURES	xi
LIST OF PLATES	xiii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV
LIST OF COMPOUNDS	xviii

CHA	APTER ONE: INTRODUCTION	1	
1.1	Biotransformation of Natural Products and Its Importance		
1.2	Sustainability of Natural Product as Source of Bioactive Lead	4	
	Compounds		
1.3	Research Framework		
1.4	Objectives		
1.5	.5 Outline of the Thesis		
CHA	APTER TWO: LITERATURE REVIEW	10	
2.1	Fungi	10	
	2.1.1 Aspergillus niger	11	
	2.1.2 Absidia coerulea	12	
2.2	Biotransformation of Anthraquinones	14	
2.3	Biotransformation of Chalcones		
2.4	Chemical Constituents of the Male Flowers of Alnus sieboldiana		
2.5	Chemical Constituents of Liverwort Conocephalum conicum		