Universiti Teknologi MARA

Reducing Honeypot Log Storage Capacity Using Cron Job with Perl-Script

Nur Muhammad Irfan Abu Hassan

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.) Data Communication and Networking Faculty of Computer and Mathematical Sciences

DECEMBER 2018

STUDENT DECLARATION

I certify that this thesis and the project to which it refers is the product of my own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

.....

NUR MUHAMMAD IRFAN BIN ABU HASSAN 2016329461

NOVEMBER 30, 2018

ABSTRACT

Honeypot is a decoy computer system that is used to attract and monitor hackers' activities in the network. The aim of the honeypot is to collect information from the hackers in order to create more secure system. However, the log file generated by honeypot can grow very large when heavy traffic occurred in the system such as Distributed Denial of Services' (DDoS) attack which possess difficulty when it is being processed and analysed by network administrator as it required a lot of time and resources. To address this issue, the objective of this project is to configure a cron job that will run a perl-script which parses the collected data into database in periodically to decrease the log size. Three DDoS attack scenarios were conducted in this project to show the increasing of the log size by sending a different amount of packet per second for 8 hours in each scenario. In scenario 3, the size of the log file has increased to 844MB which causes the honeypot to stop logging information due to the disk space used in the system has reached 100%, and it takes 5 hour 20 minutes to parse the content of the log file into the database which consumed a lot of system resources. At this point, the system performance started to drop off in terms of availability, response time, and processing speed. After using the cron job, the result shown that the log file has been reduced to 118MB, the disk space used has decrease to 91%, and it only takes 40 minutes to parse the log file into the database, thus improved overall system performance. This project had successfully reduced the log size by configuring the cron job to transfer the content of the log file into the database hourly.

TABLE OF CONTENTS

CONTENTS	PAGE
SUPERVISOR APPROVAL	II
STUDENT DECLARATION	III
ACKNOWLEDGEMENT	IV
ABSTRACT	V
TABLE OF CONTENTS	VI
LIST OF FIGURES	IX
LIST OF TABLES	Х
LIST OF ABBREVIATIONS	XI
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Research Objectives	3
1.4 Research Scope	3
1.5 Research Significant	4
CHAPTER TWO: LITERATURE REVIEW	5
2.1 Intrusion Detection System	5
2.2 Honeypot	6
2.2.1 Advantages of Honeypot	7
2.3 Type of Honeypots	7
2.3.1 High Interaction Honeypots	8

3.7	Summary	37
СНА	APTER FOUR: TESTING AND RESULT	38
4.1	Introduction	38
4.2	Scenario 1 (Send 10 packets per second)	39
	2.1 Result (Before using Cron-job)2.2 Result (After using Cron-job)	39 40
4.3	Scenario 2 (Send 50 packets per second)	41
	8.1 Result (Before using Cron-job)8.2 Result (After using Cron-job)	41 42
4.4	Scenario 3 (Send 90 packets per second)	43
	I.1 Result (Before using Cron-job)I.2 Result (After using Cron-job)	44 45
4.5	Analysis	46
СНА	PTER FIVE: CONCLUSION AND RECOMMENDATION	49
5.1	Conclusion	49
5.2	Project Limitation	50
5.3	Project Recommendation	50
REF	ERENCES	52
APP	ENDICES	
APP	ENDIX A: PERL-SCRIPT	55