EFFECT OF TEMPERATURE ON THE THERMAL STABILITY OF CELLULOSE NANOFIBRIL (CNF) AND ITS FUNCTIONALIZED DERIVATIVE

MAIZATUL SAADIAH MESNI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitled **"Effect of Temperature on the Thermal Stability of Cellulose Nanofibril (CNF) and Its Functionalized Derivative"** was submitted by Maizatul Saadiah Mesni, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Ahmad Husaini Mohamed Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	xi
ABSTRAK	xii
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1

1.1 Background of study	1
1.1.1 Nanocellulose	1
1.1.2 Oil palm empty fruit bunch (OPEFB) fiber	5
1.1.3 Functionalization of cellulose nanofibril (CNF)	
by carboxymethylation technique	7
1.2 Problem statement	9
1.3 Significance of study	11
1.4 Objectives of study	12

CHAPTER 2 LITERATURE REVIEW

2.1 Nanocellulose	13
2.2 Oil palm empty fruit bunch (OPEFB) fiber	16
2.3 Functionalization of cellulose nanofibril (CNF)	
by carboxymethylation technique	20

CHAPTER 3 METHODOLOGY

3.1 Materials	22
3.1.1 Raw materials	22
3.1.2 Chemicals	22
3.2 Methods	22
3.2.1 Sample preparation	22
3.2.2 Pretreatment	23
3.2.3 Isolation of cellulose nanofibrils (CNF)	23
3.2.4 Functionalization of cellulose nanofibril (CNF)	
by carboxymethylation technique	24

and carboxymethyl cellulose nanofibril (CM-CNF)243.3.1 Attenuated Total Reflection-Fourier Transforms Infrared Spectrometry (ATR-FTIR) analysis243.3.2 Optical Transparency properties analysis253.3.3 Thermal Gravimetric analysis (TGA)253.4 Flowchart26	3.3 Characterization of cellulose nanofibril (CNF)	
3.3.1 Attenuated Total Reflection-Fourier Transforms Infrared Spectrometry (ATR-FTIR) analysis243.3.2 Optical Transparency properties analysis253.3.3 Thermal Gravimetric analysis (TGA)253.4 Flowchart26	and carboxymethyl cellulose nanofibril (CM-CNF)	24
Spectrometry (ATR-FTIR) analysis243.3.2 Optical Transparency properties analysis253.3.3 Thermal Gravimetric analysis (TGA)253.4 Flowchart26	3.3.1 Attenuated Total Reflection-Fourier Transforms Infrared	
3.3.2 Optical Transparency properties analysis253.3.3 Thermal Gravimetric analysis (TGA)253.4 Flowchart26	Spectrometry (ATR-FTIR) analysis	24
3.3.3 Thermal Gravimetric analysis (TGA)253.4 Flowchart26	3.3.2 Optical Transparency properties analysis	25
3.4 Flowchart 26	3.3.3 Thermal Gravimetric analysis (TGA)	25
	3.4 Flowchart	26

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Isolation of cellulose nanofibrils (CNF)	27
4.2 Functionalization of CM-CNF	30
4.3 Characterization of CNF and CM-CNF	32
4.3.1 ATR-FTIR spectroscopic analysis of CNF	32
4.3.2 ATR-FTIR spectroscopic analysis of CM-CNF	36
4.3.3 Optical transparency properties analysis	37
4.3.4 Thermal gravimetric analysis (TGA)	39

CHAPTER 5 CONCLUSION AND RECOMMENDATION 43

CITED REFERENCES	45
APPENDICES	49
CURRICULUM VITAE	58

ABSTRACT

EFFECT OF TEMPERATURE ON THERMAL STABILITY OF CELLULOSE NANOFIBRIL (CNF) AND ITS FUNCTIONALIZED DERIVATIVE

Nanocellulose possess good properties such as renewable, biodegradable and low cost which suitable in various application. The aim of this study is to isolate cellulose nanofibril (CNF) from oil palm empty fruit bunch (OPEFB) fiber using sodium hydroxide (NaOH) alkaline treatment at different temperature (45 °C, 55 °C, 65 °C, 75 °C, 85 °C). The isolated CNF was further functionalized with sodium monochloroacetic acid (MCA) by alkalization and etherification process to form carboxymethyl cellulose nanofibril (CM-CNF). All the product of CNF and CM-CNF was characterized using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR), Ultraviolet Visible (UV-Vis) and Thermal Gravimetric Analysis (TGA). The highest percentage yield obtained is CNF-55 with 28.97% as well as CM-CNF 65 with 93%. Infrared analysis of CNF showed the absence peaks at 1700 cm⁻¹ and 1200 cm⁻¹ indicating efficiently removed of hemicellulose and lignin after bleaching process. The CM-CNF spectra showed the new peak appeared at 1600 cm⁻¹ represent the substitution of hydrogen atom to carboxyl group (COO⁻). Analysis of visible light transmittance suggest. CNF has a smaller diameter size due to higher percentage transmittance obtained was above 90% which indicate in all condition. CNF-55 and CM-CNF 55 showed a better thermal stability due to the efficiency in removing lignocellulosic materials.