UNIVERSITI TEKNOLOGI MARA

DESIGN OF PECTINATE NANOPARTICLES AS ORAL INSULIN CARRIER

MOHAMMAD TARMIZI BIN MOHD MOKHTAR

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Pharmacy

September 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohammad Tarmizi Bin Mohd Mokhtar	
Student I.D No.	:	2007239448	
Programme	:	PH780	
Faculty	:	Pharmacy	
Title	:	Design of Pectinate Nanoparticles as Oral Insulin	
		Carrier	

Signature of Student	:	
Date	:	September 2014

.

ABSTRACT

The formability and potential of zinc pectinate nanoparticles as an oral insulin carrier were investigated. Zinc pectinate nanoparticles were prepared through ionotropic gelation of pectin with zinc ions. When required, sodium chloride was added as channeling agent to induce rapid insulin release from nanomatrices. The formed nanoparticles were subjected to *in vitro* size, morphology, zeta potential, drug content, drug association efficiency, drug release, drug-polymer and polymer-polymer interaction studies by means of zetasizer, scanning electron microscope, high performance liquid chromatography, dissolution tester, differential scanning calorimeter and fourier transform infra-red spectrometer, as well as in vivo blood glucose lowering investigation using streptozotocin-induced diabetic rats. Pectininsulin solution at pH 3 was ideal for use in nanoparticle preparation with Zn^{2+} as crosslinking agent. The formed nanoparticles were able to encapsulate insulin substantially due to favourable electrostatic interaction between negatively charged pectin molecules with insulin and Zn²⁺. Unexpectedly, deionized water was found to exhibit a higher blood glucose lowering capacity than insulin solution, and to a lesser extent, blank and insulin loaded zinc pectinate nanoparticles. This was primarily due to interaction between water with insulin and/or excipients can lead to reduced water migration from gastrointestinal tract to systemic circulation. Formulation of insulin into polymeric nanoparticles may introduce complications in therapeutics related to water-nanoparticles interaction.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xiii

1
1
1
2
2
4
4
5
5
5
7
7
7
15
21
24
24
25
31

	2.2.4 Stability and degradation	33
	2.2.5 Mode of administration	35
	2.2.5.1 Administration devices	35
	2.2.5.2 Administration site	36
	2.2.5.3 Exogenous insulin preparation	36
	2.2.5.4 Administration regimen	38
	2.2.6 Alternative routes of delivery	40
	2.2.7 Oral delivery challenges	44
	2.2.8 Strategies for oral delivery	46
2.3	2.3 Pectin	52
	2.3.1 Introduction, source and production	52
	2.3.2 Structure and properties	55
	2.3.3 Pharmaceutical uses	56
СН	CHAPTER THREE : METHODOLOGY	59
3.1	3.1 Introduction	59
3.2	3.2 Materials	59
3.3	3.3 Methods	59
	3.3.1 Preparation of nanoparticles	59
	3.3.2 Physicochemical characterization of nano	particles 61
	3.3.2.1 Size and zeta potential	61
	3.3.2.2 High Performance Liquid Chromato	graphy (HPLC) 62
	3.3.2.3 Drug content and association efficiency	ciency 63
	3.3.2.4 In vitro release studies	64
	3.3.2.5 Morphology	65
	3.3.2.6 Fourier Transform Infra-Red Spe	ctroscopy (FTIR) 66
	3.3.3 Insulin-water and nanoparticles-water inte	eraction 66
	3.3.3.1 Fourier Transform Infra-Red Spe	ctroscopy (FTIR) 66
	3.3.3.2 X-ray diffractometry (XRD)	67
	3.3.3.3 Viscometry	68
	3.3.3.4 Osmolality	69
	3.3.4 In vivo analysis	70
	3.3.4.1 Animals	70