PREPARATION AND CHARACTERIZATION OF RADIATED POLYMERS FOR VARIOUS ELECTROCHEMICAL APPLICATIONS

INSTITUT PENGURUSAN PENYELIDIKAN UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

,

•

.

DISEDIAKAN OLEH:

DR. FAMIZA ABDUL LATIF

FEBRUARI 2010

AHLI KUMPULAN PENYELIDIK

DR. FAMIZA ABDUL LATIF KETUA PROJEK

. andatangan

PROF. MADYA DR. RAHMAH MOHAMED Ahli

. Tandatangan

DR. YUSAIRIE MOHAMED Ahli

ABSTRACT

In this study, the high density polyethylene (HDPE) and low density polyethylene (LDPE) sheets were prepared by compression moulding technique. Both sheets were irradiated by electron beam irradiation at 100 to 800 kGy of irradiation dose. Unfortunately, the HDPE sheet showed degradation above 700 kGy of irradiation dose. On the other hand, LDPE can withstand higher irradiation dose up to 800 kGy without showing any degradation. Both sheets became harder after irradiation due to the formation of crosslinking in the polymer structure. This has been confirmed from the thermal gravimetric and differential scanning calorimetry analysis in which the decomposition and the melting temperatures of these irradiated systems were higher than in their un-irradiated systems. The formation of crosslinking in these irradiated HDPE and LDPE system were further confirmed from the formation of interpenetrating structure which were observed from the electron micrograph of these irradiated polymers. From the hot-point probe measurement, both irradiated HDPE and LDPE were *p*-type semiconductors. The presence of charge carriers in these systems were due to the delocalization of electrons from the conjugated C=C bonds that formed in these irradiated systems. The formation of these conjugated C=C bonds in these irradiated HDPE and LDPE systems has been confirmed from the FTIR analysis in which the C=C bonds of trans-vinylene and end-vinyl were detected at 965 cm⁻¹ and 888 cm⁻¹ respectively. However, it was found that irradiated HDPE system exhibited higher concentration of conjugated bonds than LDPE due to the closer chain arrangement in the HDPE system that in turn enhance the electrons delocalization along the HDPE chain hence giving lower band gap energy of 2.75 eV compared to LDPE which was 3.97 eV. Interestingly, it was found that the band gap of irradiated HDPE was lower than the polyphenylene and silicon carbide semiconductor.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF PHOTOGRAPHS	Х
LISTOF SCHEMES	xi
LIST OF ABBREVIATIONS	xii
LIST OF PUBLICATIONS	xiii
CHAPTER 1 INTRODUCTION	
1.1 Classification of Conducting Polymers	1

1.2	Preparation of Electronic Conducting Polymers		
1.3	Problem Statement		
1.4	Objectives		
1.5	Research Scope		
	1.5.1 Selection of Materials	5	
	1.5.2 Selection of Material Characterizations	6	
1.6	Expectations		
1.7	Technical Challenge and Limitations		

CHAPTER 2 LITERATURE REVIEW

2.1	Irradiated Polymers Background	8
2.2	Basic Irradiation Process	8
2.3	Possible Transformations in Irradiated Polymers	9
2.4	The Applications of Irradiated Polymers	13
2.5	Polyethylene	13
2.6	Material Characterization	. 15

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Samp	Samples Preparation	
	3.1.1	Materials Selection	29
	3.1.2	Preparation of HDPE and LDPE Sheets	30
	3.1.3	Preparation of Irradiated HDPE and LDPE Sheets by	31
		Electron Beam Irradiation	
3.2	Material Characterizations		31
	3.2.1	Field Emission Scanning Electron Microscope Analysis	31

	3.2.2	Fourier Transform Infrared Analysis	31
	3.2.3	Thermal Gravimetry Analysis	32
	3.2.4	Differential Scanning Calorimetry Analysis	32
	3.2.5	Hot-point Probe Measurement	33
	3.2.6	UV-vis spectroscopy	33
СНА	PTER 4	PREPARATION AND CHARACTERIZATION OF	
		IRRADIATED HDPE SEMICONDUCTOR	
4.1	Format	ion of Irradiated HDPE Sheets	35
4.2	FESEM	A Study on the Morphology of Irradiated HDPE Sheets	36
4.3	FTIR S	Study of Irradiated HDPE Sheets	39
4.4	Therma	al Gravimetry Analysis of Irradiated HDPE Sheets	45
4.5	Differe	ntial Scanning Calorimetry Analysis of	46
	Irradiat	ted HDPE Sheets	
4.6	Determ	nination of Type of Irradiated HDPE	48
		onducting Material	
4.7	Band C	Gap Energy Analysis of Irradiated HDPE Sheets	49
4.8	Conclu	sion	51
CHA	PTER 5	PREPARATION AND CHARACTERIZATION OF	
		IRRADIATED LDPE SEMICONDUCTOR	
5.1	Format	tion of Irradiated LDPE Sheets	52
5.2	FESEN	A Study on the Morphology of Irradiated LDPE Sheets	53
5.3	FTIR S	Study of Irradiated LDPE Sheets	56
5.4	Therma	al Gravimetry Analysis of Irradiated LDPE Sheets	59
5.5	Differe	ential Scanning Calorimetry Analysis of	61
	Irradiat	ted LDPE Sheets	
5.6	Determ	nination of Type of Irradiated LDPE	62
	Semico	onducting Material	
5.7	Band C	Gap Energy Analysis of Irradiated LDPE Sheets	63
5.8	Conclu	ision	65
CHA	APTER 6	CONCLUSION AND RECOMMENDATIONS	. 66
REF	ERENCI	ES	68