OPTIMIZATION OF SOLVENT RATIO, EXTRACTION TIME AND TEMPERATURE FROM *CLITORIA TERNATEA* L PETALS

NURUL ATIQAH BINTI AZIZAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

Final Year Project entitled "Optimization of solvent ratio, extraction time and temperature from *Clitoria ternatea* l. petals" was submitted by Nurul Atiqah Binti Azizan, in partial fulfillment of the requirement for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Hasratul Nadiah Mohd Rashid Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Norul Azilah Abdul Rahman Co Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Mnti Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Mazni Binti Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date: 8/8/2017

TABLE OF CONTENTS

		Page
TABI LIST LIST		iii iv vi vii viii ix x
СНАР	TER 1 INTRODUCTION	
1.1	Background of study	1
1.2	Problem statement	4
1.3	Significance of Research	6
1.4	Objectives	7
СНАР	TER 2 LITERATURE REVIEW	
2.1	Natural Colorant	8
2.2	Clitoria Ternatea L.	10
2.3	Anthocyanin Compound	12
2.4	Optimization of extraction method	14
	2.4.1 Solvent Ratio	14
	2.4.2 Extraction Time	15
2.5	2.4.3 Extraction Temperature	16
2.5	Characterization of Anthocyanin compound in Clitoria ternate Petals	17
	2.5.1 Fourier Transform Infrared (FTIR) Spectroscopy	17
	2.5.1 Pourier Hansform Inflated (FTIK) spectroscopy 2.5.2 Ultraviolet Visible (UV-Vis) spectroscopy	18
	2.3.2 Ottraviolet visible (O v-vis) spectroscopy	16
	TER 3 METHODOLOGY Materials	10
3.1	3.1.1 Raw material	19 19
	3.1.2 Chemicals	19
		19
	3.1.3 Apparatus 3.1.4 Instruments	19
3.2	Methods	20
J. 2	3.2.1 Sample Preparation	20
	3.2.2 Optimization of Extraction	20
	3.2.2.1 Solvent Ratio	22
	3.2.2.2 Extraction Time	

	3.2.2.3 Extraction Temperature	22		
3.3	Total anthocyanin content	22		
3.4	Characterization Method			
	3.4.2 Fourier Transform Infrared (FTIR) Spectroscopy	23		
	3.4.3 Ultraviolet spectroscopy (UV-VIS) Spectroscopy	23		
СНАР	TER 4 RESULT AND DISCUSSION			
4.1	Optimization of extraction	24		
	4.1.1 Solvent Ratio	24		
	4.1.2 Extraction Time	27		
	4.1.3 Extraction Temperature	30		
4.2	Characterization Using Fourier Transform Infrared (FTIR)	32		
	Spectroscopy			
СНАР	TER 5 CONCLUSION AND RECOMMENDATION			
5.1	Conclusion	35		
5.2	Recommendation	36		
CITE	D REFERENCES	37		
	NDICES	42		
	RICULUM VITAE	46		

.

ABSTRACT

OPTIMIZATION OF SOLVENT RATIO, EXTRACTION TIME AND TEMPERATURE FROM *CLITORIA TERNATEA* L. PETALS

Nowadays, natural dyes and pigment gain public attention because of their nontoxic and eco-friendly characteristic. Clitoria Ternatea L. petals is the flower that can produce colour as it is rich with anthocyanin pigment. Anthocyanin have been used as natural colorant in food industry, cosmetic and pharmaceutical as it also contain antioxidant properties. Moreover, toxicity of synthetic dyes that can affect the environment was the reason why it is needed to be substituted with the natural colorant. Therefore, this experiment was designed to find the optimum condition for extraction of natural pigment from the Clitoria Ternatea L. petals and to characterize the natural dye extract using Fourier Transform Infrared (FTIR) and Ultraviolet-Visible Spectrometry (UV-Vis). The Clitorea ternatea L. petals was dried in the oven at 30 °C for 5 hours and kept in the room temperature. Three parameters was applied to evaluate the optimum condition namely solvent ratio of acidified methanol and water (0-100%), extraction time (30-270min) and extraction temperature (30-100 °C). The value of absorbance was measured using UV-Vis spectroscopy in order to determine the anthocyanin content extracted from flower petals. From the results, the optimum extraction condition that maximize the extracted natural pigment were found to be 60% methanol, 180 min extraction time and 90 °C extraction temperature. For characterization by FTIR the functional group presence indicate that the pigment in the Clitoria Ternatea L. petals was anthocyanin compound.