CHEMICAL SCREENING AND BIOLOGICAL PROPERTIES OF THE AROMATIC PLANT *Polygonum minus* Huds (KESUM)

NOOR MASITAH BINTI MAT RASHID

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitled "Chemical Screening and Biological Properties of the Aromatic Plant, *Polygonum minus* Huds (Kesum)" was submitted by Noor Masitah Binti Mat Rashid, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Rohaiza binti Saat Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda binti Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni binti Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date : _____

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Significance of study	4
1.4	Objectives of study	5

CHAPTER 2 LITERATURE REVIEW

CHAI	TEK Z LITERATUKE REVIEW	
2.1	The Classification of Polygonum minus Huds Family	6
2.2	Traditional Purpose of Polygonum minus Huds species	8
2.3	Phytochemical Studies on Polygonum minus Huds extract	11
	2.3.1 Essential oil	13
	2.3.2 Flavonoids	17
2.4	Bioactivity study of Polygonum minus Huds	19
	2.4.1 Antibacterial	20
	2.4.2 Anti-inflammatory	21
	2.4.3 Antiulcer	21
	2.4.4 Antioxidant	21

CHAPTER 3 METHODOLOGY 3.1 Materials

3.2

Mater	ials	23
3.1.1	Raw materials	23
3.1.2	Chemicals	23
3.1.3	Apparatus	24
3.1.4	Instrument	24
Metho	odology	24
3.2.1	Extraction of Polygonum minus Huds leaves	24
3.2.2	Phytochemical Screening on the Extracted Sample	26
	3.2.2.1 Test for alkaloids	26
	3.2.2.2 Test for flavonoids	26
	3.2.2.3 Test for phenol	26
	3.2.2.4 Test for terpenoids (Salkowski test)	27

	3.2.2.5 Test for tannins	27
	3.2.2.6 Test for saponins	27
	3.2.2.7 Test for glycosides	27
	3.2.2.8 Test for sterol (Liebermann-Burchard Reaction)	28
3.2.3	Thin Layer Chromatography (TLC)	28
3.2.4	Antibacterial assay	28
	3.2.4.1 General	28
	3.2.4.2 Media preparation of Nutrient Agar (NA)	29
	3.2.4.3 Culturing microbe of Nutrient Broth (NB)	29
	3.2.4.4 Sample preparation	29
	3.2.4.5 Disc diffusion method	30
	3.2.4.6 Control test	30
3.2.5	TLC bioautography	31
DTED /	DEGULTE AND DISCUSSION	

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Extraction of sample	32
4.2	Phytochemical screening	34
4.3	Thin Layer Chromatography(TLC)	37
4.4	Antibacterial assay	43
4.5	Antioxidant activity	46

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	48
5.2	Recommendations	50

CITED REFERENCES	51
APPENDICES	54
CURRICULUM VITAE	55

ABSTRACT

CHEMICAL SCREENING AND BIOLOGICAL PROPERTIES OF THE AROMATIC PLANT, *Polygonum minus* Huds (KESUM)

The research of an aromatic plant, Polygonum minus Huds or kesum has been done on their chemical screening and biological properties. Extractions by cool extraction method were done at room temperature for 72 hours successively by three different solvent which are hexane, ethyl acetate and ethanol. The highest percentage yield shown by ethanol extract which is 4.73%. The phytochemical screening analysis for ethanol extract were done and confirm the presence of alkaloids, flavonoids, glycosides, phenols, saponins, sterols, tannins and terpenoids. In thin layer chromatography (TLC) study, the combination of solvent system hexane and ethyl acetate give a good separation of compound under ultraviolet (UV) lamp short wavelength and long wavelength. The best ratio for solvent system for hexane extract and ethyl acetate extract is 8:2 while the ratio for ethanol extract is 7:3. Disc diffusion method were used to determine the antibacterial activities of crude by using four phatogenic bacteria of Bacillus subtilis, Staphylococcus aureus, Salmonella typhi and Escherichia coli. The highest inhibition zone observed was the hexane extract with the diameter of 14 mm. Meanwhile for antioxidant study, DPPH were used to define the presence of antioxidant in the crude extracts.