Universiti Teknologi MARA

Air Pollution Monitoring System with the Internet of Things (IoT) Technology

Afif Irhami Bin Shaik Amair

Thesis submitted in fulfillment of the requirement for Bachelor for Science (Hons) Data Communication and Networking Faculty of Computer and Mathematical Sciences

December 2018

STUDENT DECLARATION

I certify that this thesis and the project to which it refers is the product of my own work and that any idea or quotation from the work of the other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

Afif Irhami Bin Shaik Amair 2016718763

DECEMBER 3, 2018

ABSTRACT

Air pollution nowadays becomes an issue that worries the community in the big cities such as Kuala Lumpur and Penang. The polluted air affects human health in Malaysia, especially the elderly and asthmatic people or those who involved in outdoor activities in sport and recreation as well as people with a working environment that exposes them to unhealthy air quality. The factors that contribute to air pollution include haze, smoke coming from vehicles and factories, open burning, as well as dust and debris. Most of the cities are facing the issue of poor air quality which is not good for human health. It is crucial for cities to have the system that can monitor air quality based on the index used to measure the air pollution. Hence, this project proposes a tool that can detect the degree of pollution in the air quality and publish the information real time on the websites or electric bulletin board. It is developed by using Arduino gas sensor, to detect gases such as smoke, benzene, carbon dioxide and alcohol. The data captured from the tool will be recorded in the database to measure the air quality and determine the degree of danger it may cause to society. It can alert the public to avoid certain area and help maintain the happiness and healthiness of the community. The tool had been tested in several locations and the finding shows a positive result and its potential to be further enhanced and commercialized.

TABLE OF CONTENTS

CONT	ENT	PAGE
SUPER	VISOR APPROVAL	ii
STUDE	NT DECLARATION	iii
ACKNO	OWLEDGMENTS	iv
ABSTR	ACT	v
TABLE	OF CONTENTS	vi
LIST O	F FIGURES	viii
LIST O	F TABLES	ix
LIST O	F ABBREVIATIONS	х
СНАРТ	'ER 1	
1.1	Background Study	1
1.2	Research Motivation	2
1.3	Problem Statement	3
1.4	Project Objective	4
1.5	Project Significance	4
1.6	Project Scope and Limitation	5
1.7	Summary	5
СНАРТ	ER 2	
2.1	Air Pollution	6
2.2	Monitoring System	7
	2.2.1 Web Server	7
	2.2.2 Wi-Fi Module	7
	2.2.3 Cloud	8
2.3	Internet of Things (IoT)	10
2.4	Overview of Microcontroller	11
	2.4.1 Categories of Microcontroller	11
	2.4.2 Arduino UNO Board	14
2.5	Sensor Overview	14
	2.5.1 Criteria to Choose a Sensor	15
	2.5.2 Smart Sensor	15
	2.5.3 Wireless Sensor	16

2.5.4 Gas Sensor	16
Related Work	17
2.6.1 Application of Gas Sensor	17
2.6.2 Arduino Uno R3 Microcontroller	18
2.6.4 Discussion on Related Work	19
Summary	20
	 2.5.4 Gas Sensor Related Work 2.6.1 Application of Gas Sensor 2.6.2 Arduino Uno R3 Microcontroller 2.6.4 Discussion on Related Work Summary

CHAPTER 3

3.1	Initiation Phase	21
3.2	Planning Phase	22
	3.2.1 Hardware Requirement	23
	3.2.2 Software Requirement	28
	3.2.3 Design Specification	29
	3.2.4 Evaluation Method	30
	3.2.5 Test Plan	30
3.3	Development Phase	31
	3.3.1 Circuit Design	33
	3.3.2 Program Design	35
3.4 Test Requirements		37
	3.4.1 Test ESP8266 Wi-Fi Module	37
	3.4.2 Test MQ135	39
	3.4.3 Test Real Time Clock (RTC) Module	39
3.5	Evaluation Phase	40
3.6	Documentation Phase	45
3.7	Test Prototype	46
3.8	Summary	47

CHAPTER 4

4.1	Outdoor Monitoring Experiment	48
	4.1.1 Paddy Field Area	48
	4.1.2 Factory Area	51
	4.1.3 City Area	53
4.2	Indoor Monitoring Experiment	56
4.4	Discussion on Findings	59

CHAPTER 5

5.1	Project Achievement	62
5.2	Project Contribution	63
5.3	Problems and Limitations	63
5.4	Recommendation for Future work	64
APPENDICES		65
REFERENCES		79

REFERENCES	
------------	--