DETERMINATION OF ANTIOXIDANT IN TOMATO (SOLANUM LYCOPERSICUM L.) USING FERRIC REDUCING ANTIOXIDANT POWER (FRAP) ASSAY

NOR SYAFIQAH BINTI ZAKARIA

Final Year Project Report Submitted in
Partial Fulfilment of the Requirements for the
Degree of Bachelor of Science (Hons.) Chemistry
in the Faculty of Applied Sciences
Universiti Teknologi MARA

ABSTRACT

DETERMINATION OF ANTIOXIDANT IN TOMATO (SOLANUM LYCOPERSICUM L.) USING FERRIC REDUCING ANTIOXIDANT POWER (FRAP) ASSAY

Tomatoes (Solanum Lycopersicum L) is one of the most consumed fruits in the world that plays an important role in disease prevention. The purposes of this study were to determine the amount antioxidant of tomato and the effect of temperature and cook duration on the antioxidant of tomatoes using Ferric Reducing Antioxidant Power (FRAP) assay. UV-Vis spectrophotometer was used in this study to analyze tomato sample. The antioxidant capacity of tomatoes which was 169.93±0.92 µM Fe(II)/mL. For temperature study, tomatoes exhibited the greatest antioxidant at 100°C and the lowest amount of antioxidant at room temperature. Thus, it could be concluded that, the optimum temperature for the antioxidant extraction in tomatoes was 100°C. Besides, for cook duration study, it showed increasing of the antioxidant capacity from 5 minutes to 15 minutes before dropped at 20 minutes. Thus, most suitable cook duration of tomato in order to gain a greatest amount of antioxidant was 15 minute.

TABLE OF CONTENT

ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF ABBREVIATIONS LIST OF SYMBOLS ABSTRACT ABSTRAK		Page iii iv vi vii viii ix x
СН	APTER 1: INTRODUCTION	
	Background of Study	1
	Problem Statement	3
	Significant of Study	4
1.4	Objectives	4
	APTER 2: LITERATURE REVIEW	
	Antioxidant of Fruits	5
	Antioxidant in Tomatoes	7
2.3	Method in Determination of Antioxidant	10
	2.3.1 ORAC Assay	10
	2.3.2 DPPH Assay	11
	2.3.3 FRAP Assay	13
	APTER 3: METHODOLOGY	
	Chemicals	16
	Instrument	16
	Food Sampling	16
	Sample Preparation	17
3.5		17
	3.5.1 Effect of Temperatures	17
	3.5.2 Effect of Cook Durations	17
3.6	Ferric Reducing Antioxidant Power (FRAP) Assay Preparation	18
СН	APTER 4: RESULTS AND DISCUSSION	
	Antioxidant in Tomatoes	19
	Effect of the Temperatures on the Antioxidant of the Tomatoes	21
	Effect of Cook Duration on Antioxidant of the Tomatoes	23

LIST OF TABLES

Γable	Captions	Page
2.1	Antioxidant capacity of the four types of tree tomato fruits	8
2.2	Scavenging activity of the banana, green tea, pink guava and	13
	honeydew	
4.2	Antioxidant capacity at different temperatures	21
4.3	Effect of cook duration on antioxidant of tomatoes	23

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Cultivated tomato (Solanum Lycopersicum L.) that belongs to the Solanaceae family is one of the foods that highly consumed in the globe after maize, rice, wheat, potatoes, cassava and soybean. Hence, it is a major source of the dietary nutrients and antioxidant. During the last 20 years ago, America and Europe are the majors producer of the tomato but today Asia dominated the market with China ranking first and followed in declining request by India, USA, Turkey, Egypt, Iran, Italy, Brazil, Spain, and Uzbekistan (Bergougnoux, 2014).

Amazingly, the Northern Europe with unfavorable climate condition for the tomato also becomes the higher yielder of that fruit (Bergougnoux, 2014). There are around 7500 types of tomatoes in the world. It consists of Heirloom tomatoes or known as traditional tomatoes such as Cherokee purple and green grape tomato. But, due to the development in the agro technology nowadays, there are a few hybrid species that had been found