UNIVERSITI TEKNOLOGI MARA

STRUCTURAL, THERMAL, AND MECHANICAL PROPERTIES OF PMMA/TiO₂ NANOCOMPOSITES

NIK NOOR HAFIZAH BINTI NIK MOHAMMAD

.

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

September 2014

AUTHOR'S DECLARATION

I declare that all the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and it is the results of my work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name	:	Nik Noor Hafizah Binti Nik Mohammad
ID No.	:	2010100473
Programme	:	Master of Science
Faculty	•	Faculty of Applied Sciences
Thesis Title	:	Structural, Thermal, and Mechanical Properties of PMMA/TiO ₂ Nanocomposites
Signature	:	
Date	:	September 2014

ABSTRACT

Polymer nanocomposite is a new choice to conventionally filled polymers. Because of the nanometer sizes of filler, filler dispersion in this nanocomposite demonstrates markedly enhanced properties compared to pure polymers include an increased in their modulus and strength, thermal and mechanical properties. In this study, there are two stages involve in preparation the PMMA/TiO₂ nanocomposites. First is the synthesis of TiO_2 nanopowder using sol gel and milling method. The structural properties of TiO_2 synthesized at 0.4 molar precursor concentration with the 6 hour milling time and 4 grams milling amount of TiO₂ in the milling process were measured using Field Emission Scanning Electron Microscopy (FE-SEM), X-Ray Diffraction (XRD), Raman Spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS) and FTIR. TiO₂ produced were confirmed with XRD and Raman Spectroscopy with an anatase structure produced with only anatase phase was observed. Furthermore, EDS results shows that the element of titanium and oxygen detected in the sample and FTIR analysis also shows the bonding of Ti-O-Ti was observed from the sample. In the second stage, an optimized TiO_2 nanopowder were mixed with PMMA to produce PMMA/TiO₂ nanocomposites. This polymer nanocomposites was prepared by mixing TiO₂ nanofiller into polymer PMMA matrix using sonication and solution casting technique. The structural, thermal and mechanical properties of PMMA/TiO₂ nanocomposites were investigated. The structural properties of PMMA/TiO₂ nanocomposites showing an increase of TiO₂ amount in PMMA produce an increase many cracks on the sample surface observed by FESEM. Meanwhile, for the thermal properties, Tg increase when TiO₂ filler is added into PMMA. The thermal degradation of the nanocomposite also increases when amount of TiO2 increased. Further, mechanical properties of nanocomposite also show the modulus increased with TiO₂ amount, up to 15 wt% TiO₂ in PMMA. The 15 wt% TiO₂ nanopowder in PMMA is the optimized one due to high modulus obtained. When the amount of TiO_2 nanopowder is higher than 15 wt%, modulus of the sample drop drastically due to the brittle properties of the nanocomposited samples observed. Higher amounts of TiO₂ in PMMA increase an intercalation of TiO₂ between the polymer chains, thus, weaken the polymer. Effect of TiO_2 nanoparticle filler size also was investigated. Smaller size of the filler shows higher thermal and mechanical properties of the and nanocomposite. Good thermal mechanical properties of PMMA/TiO₂ nanocomposites contribute to the various applications for this nanocomposite applications such as in household applications, electronic, aerospace and also in biotechnology applications.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	ix

CHAPTER ONE: INTRODUCTION

1.1	Nanotechnology nowadays	1
1.2	Polymer nanocomposites – Improve the thermal and mechanical	3
	properties of the polymer	
1.3	Problem statement	5
1.4	Objectives	5
1.5	Scope of the thesis	6
1.6	Contribution of the research	7
1.7	Thesis organization	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	9
2.2	Synthesis of titanium dioxide by sol gel method	10
2.3	Properties of titanium dioxide	14
2.4	Properties of poly(methyl methacrylate)	16
2.5	Preparation of $PMMA/TiO_2$ nanocomposites by solution casting method	17
2.6	Mechanical and thermal properties of PMMA/TiO2 nanocomposites	18

CHAPTER THREE: METHODOLOGY

20

3.2	Introd	Introduction to the sample preparation		
3.3	Synthe	ynthesis of TiO_2 nanopowder		
	3.3.1	Syn	thesis of TiO_2 nanopowder at different TiO_2 precursor	22
		con	centration	
	3.3.2	Syn	thesis of TiO_2 nanopowder at different milling time in the	22
		mill	ling process	
	3.3.3	Syn	thesis of TiO_2 nanopowder at different milling amount in the	23
		mill	ling process	
3.4	Prepa	ration	of PMMA/TiO ₂ nanocomposites	24
	3.4.1	Prej	paration of $PMMA/TiO_2$ nanocomposites with different TiO_2	25
		wei	ght percent	
	3.4.2	Pre	paration of $PMMA/TiO_2$ nanocomposites at different types of	26
		TiO	₂ nanopowder	
3.5	3.5 Characterization method			
	3.5.1	Stru	actural properties	
		i.	X-Ray Diffraction (XRD)	26
		ii.	Raman spectroscopy	28
		iii.	Field Effect Scanning Electron Microscopy (FE-SEM)	29
		iv.	Energy Dispersive X-ray Spectroscopy (EDS)	30
		v.	Fourier Transforms Infrared Spectroscopy (FTIR)	31
	3.5.2		ermal properties	
		i.	Thermogravimetric Analysis (TGA)	33
		ii.	Different Scanning Calorimetry (DSC)	34
	3.5.3		chanical Properties	
		i.	Dynamic Mechanical Thermal Analysis (DMTA)	36
CH	APTEF	k FO		KIDE
			NANOPOWDER	

4.1	Introduction	41
4.2	Structural properties of synthesized TiO_2 nanopowder at different TiO_2	41
	precursor concentration	