SYNTHESIS AND CHARACTERIZATION OF GRAPHITE OXIDE AND 2-METHYL-4-CHLOROPHENOXY ACETIC ACID-GRAPHITE OXIDE (MCPA-GO) NANOCOMPOSITE WITH ITS CONTROLLED RELEASE PROPERTY

34

NORILYANI IZZATI BINTI HASANUDDIN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project entitled "Synthesis and Characterization of Graphite Oxide and 2-Methyl-4-Chlorophenoxy Acetic Acid-Graphite Oxide (MCPA-GO) Nanocomposite with its Controlled Release Property" was submitted by Norilyani Izzati Binti Hasanuddin, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Tn Sheikh Ahamad Izaddin Bin Sheikh Mohd Ghazali Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda binti Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Mazni binti Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date: 7/8/2017

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ili
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	X

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	MCPA	2
1.3	Problem Statement	4
1.4	Significance of Study	5
1.5	Objectives of Study	7

CHAPTER 2 LITERATURE REVIEW

2.1	Historical Background		
2.2			
2.3	Graphite Oxide		
2.4	Intercalation of Graphite Oxide		
2.5	2.5 Synthesis of Graphite Oxide		17
	2.5.1	Brodie's Method	18
	2.5.2	Staudenmaier's Method	19
	2.5.3	Hummer's Method	20
2.6	Synthe	esis of MCPA-GO nanocomposite	21
2.7	Application of Graphite Oxide		22
	2.7.1	Fabrication of Supercapacitors	22
	2.7.2	Bio-functionalization with Proteins, DNA and other	23
		Molecules	
	2.7.3	Drug Delivery	25
	2.7.4	Gene Delivery	26
	2.7.5	Bio-sensor and Bio-imaging	27
CHA	APTER	3 METHODOLOGY	
3.1	Materi	als	30
3.2			31
3.3	Synthe	esis of MCPA-GO nanocomposite	31
3.4	Contro	olled Release method	32
3.5	Characterization		

			52
	3.5.1	Fourier Transform Infrared (FTIR)	32
	3.5.2	Powder X-Ray Diffraction (PXRD)	33

	3.5.3	Carbon, Hydrogen, Nitrogen, Sulphur (CHNS) Analyzer	35
CH	APTER	A 4 RESULT AND DISCUSSION	
4.1	Chara	cterization of Graphite Oxide	36
	4.1.1	Fourier Transform Infrared Spectrscopy (FTIR)	36
	4.1.2	Powder X-Ray Diffraction (PXRD)	38
4.2	Chara	cterization of MCPA-GO nanocomposite	39
	4.2.1	Fourier Transform Infrared Spectrscopy (FTIR)	39
	4.2.2	Powder X-Ray Diffraction (PXRD)	43
	4.2.3	Carbon, Hydrogen, Nitrogen, Sulphur (CHNS) Analyzer	47
	4.2.4	•	48
CH	АРТЕБ	8 5 CONCLUSIONS AND RECOMMENDATIONS	
5.1	Con	clusion	52
5.2	Rec	ommendations	54
CIT	'ED RE	FERENCES	55
API	PENDI	CES	60
CUI	RRICU	LUM VITAE	65

-

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF GRAPHITE OXIDE AND 2-METHYL-4-CHLOROPHENOXY ACETIC ACID – GRAPHITE OXIDE (MCPA-GO) NANOCOMPOSITE WITH ITS CONTROLLED RELEASE PROPERTY

The graphite oxide and 2-methyl-4chlorophenoxy acetic acid- graphite oxide (MCPA-GO) nanocomposite were successfully synthesized by using improved Hummer's method and ion-exchange method respectively. In this study, MCPA-GO nanocomposite was synthesized at various concentration of MCPA ranging from 0.1 to 0.7 M to lowering its toxicity and increase the drugs/herbicides loading efficiency. Meanwhile, the graphite oxide was prepared with the use the graphite powder as starting material. Graphite oxide and MCPA-GO nanocomposite were characterized using Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD) and Carbon Hydrogen Nitrogen and Sulphur analyzer (CHNS). The FTIR spectra of MCPA-GO nanocomposite was showed resemblance peaks of the MCPA and graphite oxide indicated the inclusion of MCPA into the graphite oxide. As for XRD pattern, there was increasing in the basal spacing of the nanocomposite from the graphite oxide which by 9.3 Å to 9.7 Å. Other than that, the percentage loading of MCPA in the nanocomposite was calculated to be 98.0 % (w/w) based on the CHNS result. Next, the controlled release of MCPA-GO nanocomposite was done in two different solution which were in sodium chloride solution (NaCl) and sodium carbonate solution (Na₂CO₃). The release of MCPA into these solution was found to be dependent to the anion in the order of $Na_2CO_3 > NaCl$ with the percentage release of 66 % and 10 % respectively. It proved that this release property exhibits the potential application of graphite oxide as effective nanocarrier of herbicides.