CHEMICAL CONSTITUENTS FROM THE LEAVES OF JASMINUM SAMBAC AND ITS ANTIOXIDANT POTENTIAL

.

.

NURUL FATIN FAKHIRA BT MOHD PADLI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

1

JULY 2017

ABSTRACT

CHEMICAL CONSTITUENTS FROM THE LEAVES OF JASMINUM SAMBAC AND ITS ANTIOXIDANT POTENTIAL

Antioxidant is a substance which can impede the oxidation of other molecules. It plays an important role in impeding free radicals from damaging the skin and harmful ultraviolet rays. Traditional dietary supplement from Jasminum sambac extract is not very demanding in the market due to lack of further analysis of antioxidant in J. sambac. Apart from that, antioxidant potential of J. sambac may differ due to physical factors such as temperature, humidity, nutrients content in soil and air movement. J. sambac is also known as Arabian Jasmine originates from Oleaceae family. The objective of the study is to determine chemical constituents and antioxidant properties of leaves of J. sambac. Preliminary screening showed the presence of tannins, cardiac glycoside, steroid and saponins. Essential oil was obtained by hydrodistillation of J. sambac leaves mainly containing nonanal and 2buten-1-one. DPPH assay was applied to determine the antioxidant activities of crude extract. Dichloromethane (DCM) extract showed a moderate scavenging with IC₅₀ of 6.24 ppm compared to ascorbic acid as standard which showed highest scavenging effect with IC₅₀ of 2.90 ppm. Methanol and petroleum ether extract showed weak scavenging activity with IC50 greater than 100 ppm. Hence, DCM extract is the most antioxidative extract compared to methanol and petroleum ether extracts. Phytochemical test for crude extracts mainly showed the presence of terpenoid, aromatic and antioxidative compound. Hence, benzophenone was found as antioxidative compound in dichloromethane extract by GC-MS and its characteristic were confirmed by FTIR and TLC analysis of crude extract.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATION	xi
ABSTRACT	xii
ABSTRAK	xiii

CHAPTER 1 INTRODUCTION

1.1 Background of the study	1
1.2 Problem statement	2
1.3 Significance of study	3
1.4 Scope of study	4
1.5 Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1 Phytochemical Screening	5
2.1.1 General	5
2.1.2 Qualitative analysis	5
2.1.2.1 Pre-extraction preparation	5
2.1.2.2 Extraction of plant sample	6
2.1.2.3 Identification of chemical constituents	7
2.1.3 Quantitative analysis	8
2.2 Secondary metabolites	9
2.3 Oleaceae family	10
2.4 Species of Jasminum	11
2.4.1 Jasminum Grandiflorum	11
2.4.2 Phytochemicals in J. Grandiflorum	13
2.4.3 Jasminum auriculatum	15
2.4.4 Phytochemicals in J. auriculatum	16
2.4.5 Jasminum sambac	18
2.4.6 Phytochemicals in J. Sambac	19
2.5 Antioxidant activity of Jasminum	21

CHAPTER 3 METHODOLOGY	
3.1 Material	22
3.2 Chemical	22
3.2.1 Extraction of leaves	22
3.2.2 Phytochemical screening and identification	22
3.2.3 Thin layer chromatography analysis	22
3.2.4 Preparation of spraying reagents	22
3.3 Apparatus and instrumentation	23
3.4 Sample preparation and plant extraction	23
3.4.1 Sample preparation	23
3.4.2 Plant extraction for methanol extract	23
3.5 Photochemical screening test for methanol extract	24
3.5.1 Flavonoids	24
3.5.2 Tannis and phenols	24
3.5.3 Saponins	24
3.5.4 Alkaloid	24
3.5.5 Steroid and tripenoid	25
3.5.6 Cardiac glycoside	25
3.6 Hydrodistillation of fresh J. sambac leaves	25
3.7 GC-MS analysis of J. sambac essential oil	26
3.8 Plant extraction for crude extracts	26
3.9 FTIR analysis of crude extracts	27
3.10 Quantitative DPPH radical scavenging assay	27
3.11 Thin layer chromatography analysis of crude extracts	28
3.11.1 Preparing TLC plates	28
3.11.2 Preparing TLC developing solvent	28
3.11.3 Applying sample on TLC plates and developing the plates	29
3.11.4 Visualizing the plate and calculation of retention factor	29
3.12 TLC phytochemical screening test	30
3.12.1 Preparation of spraying reagents	30
3.12.2 Phytochemical screening test analysis	31
3.13 Qualitative DPPH radical scavenging using TLC	31
3.14 Isolation of antioxidative compounds by using chromatotron	31
3.15 TLC analysis of separated compound	32
3.16 GC-MS analysis of isolated compound	33
3.17 Flow of methodology	34

CHAPTER 4 RESULTS AND DISCUSSION 4.1 Phytochemical screening

4.1 Phytochemical screening	35
4.2 Hydrodistillation of Jasminum Sambac leaves	36
4.3 GC-MS analysis of essential oil from J. sambac leaves	37
4.4 FTIR analysis of crude extract	41

20

4.5 UV analysis of crude extract of J. sambac leaves	44
4.5.1 Mechanisms of DPPH radical scavenging of ascorbic acid	47
4.5.2 Mechanisms of DPPH radical scavenging of anti-oxidative	49
compound in dichloromethane extract	
4.6 Thin layer chromatography analysis of crude extracts	50
4.6.1 Dichloromethane extract	50
4.6.2 Methanol extract	52
4.6.3 Petroleum ether extract	53
4.6.4 Isolation and determination of antioxidative compound	55

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 58

CITED REFERENCES	59
APPENDICES	63
CURICULLUM VITAE	69