SURFACE MODIFICATION OF CELLULOSE NANOCRYSTAL ISOLATED FROM OIL PALM BIOMASS USING FORMIC ACID HYDROLYSIS AT DIFFERENT TEMPERATURE

DIAN NUR ELLEINA BTE FATANAH

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitled "Surface Modification of Cellulose Nanocrystal Isolated from Oil Palm Biomass using Formic Acid Hydrolysis at different temperature" was submitted by Dian Nur Elleina Fatanah, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Ahmad Husaini Mohamed Supervisor B. Sc. (Hons) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Dr. Cik Rohaida Che Hak Co-Supervisor Research Officer Industrial Technology Division (BTI) Malaysian Nuclear Agency Bangi 43000 Kajang

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Mazni Musa

Head of Programme B. Sc. (Hons) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date: _____

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST ABBREVIATIONS	ix
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION

1
1
7
9
11
12
13

CHAPTER 2 LITERATURE REVIEW

2.1	Isolation of Nanocellulose	14
2.2	Oil Palm Biomass	16
2.3	Surface modification	18

CHAPTER 3 METHODOLOGY

3.1	Material		21
	3.1.1	Raw material	21
	3.1.2	Chemical	21
3.2	Methods		21
	3.2.1	Sample preparation	21
	3.2.2	Pretreatment	22
	3.2.3	Formic acid hydrolysis with different temperature.	22
	3.2.4	Surface modification of CNC	23
3.3	Chara	cterisation	23
	3.3.1	Fourier Transforms Infrared (FTIR) spectrometry	23
	3.3.2	X-ray Diffraction (XRD)	24
	3.3.3	Field Emission Scanning Electron Microscopy (FESEM)	24

4.1	Isolat	25	
4.2	Surfac	26	
4.3	.3 Characterization		28
	4.3.1	FTIR Spectroscopy analysis	28
	4.3.2	Crystallinity Index from XRD	36
	4.3.3	Morphology of CNC and modify CNC	43
СНА	PTER :	5 CONLUSION AND RECOMMENDATION	46

CHAPTER 4 RESULTS AND DISCUSSION

CITED REFERENCES	48
APPENDICES	52
CURRICULUM VITAE	60

ABSTRACT

SURFACE MODIFICATION OF CELLULOSE NANOCRYSTAL ISOLATED FROM OIL PALM BIOMASS USING FORMIC ACID HYDROLYSIS AT DIFFERENT TEMPERATURE

Nanocellulose has unique properties that are renewable ability, highly content of hydroxyl (OH) group on the surface and biodegradable nanomaterials which can used in various application. Cellulose nanocrystal (CNC) was isolated from two types of oil palm biomass which are empty fruit bunch (EFB) and oil palm mesocarp (OPM) using formic acid hydrolysis treatment at different temperature. CNC with good dispersion were than being modify using p-toluenesulfonic anhydride (Ts₂O). CNC and modify-CNC from both type of biomass were characterize by using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). FTIR peaks at 1200 cm⁻¹ and 1700 cm⁻¹ were found absence after bleaching process indicating the lignin and hemicellulose has been removed. The modify CNC spectrum show new peak revealed which is sulfoxide (S=O) at wavenumber 1400 cm⁻¹ and 879 cm⁻¹. XRD spectrum exhibit the different between the CNC and modify CNC. The modify CNC from both oil palm biomass show higher crystallinity index (~99%) compare to unmodified CNC (~70%) due to present of the hydrogen bonding between OH group in nanocellulose and alkyl group in Ts₂O. The modify CNCs show face centered cubic (FCC) crystal structure. The morphology studies using FESEM show the CNC possesses needle like structure. After the modification, the morphology of CNC was rearranged to neater and denser.