SYNTHESIS AND CHARACTERISATION OF PANI/CSA IN AMMONIA DETECTION

ZAKIRA IMANA ABU MANSOR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitled **"Synthesis and Characterisation of PANI/CSA in Ammonia Detection"** was submitted by Zakira Imana binti Abu Mansor, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Kavirajaa Pandian A/L Sambasevam Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Nurul Huda binti Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan Mazni binti Musa Head of Programme School of Chemistry and Evironment B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknology MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENT

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
ABSTRACT	viii
ABSTRAK	ix

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	4
1.3	Significant of study	5
1.4	Objective of study	6

CHAPTER 2 LITERATURE REVIEW

2.1	Ammonia	7
2.2	Ammonia sensor	8
	2.2.1 Metal-oxide gas sensors	8
	2.2.2 Catalytic ammonia sensor	8
2.3	Conducting polymer	8
	2.3.1 Polyaniline	11
2.4	Doping	13
	2.4.1 Dodecylbenzenesulfonic acid (DBSA)	13
	2.4.2 Dioctyl sulfonic sodium salt (AOT)	14
	2.4.3 Camphor sulfonic acid (CSA)	15

CHAPTER 3 METHODOLOGY

3.1	Materials	16
	3.1.1 Chemicals	16
3.2	Synthesis of polyaniline with dopant CSA	16
3.3	Preparation of PANI/CSA film	17
3.4	Characterization of PANI/CSA	18
	3.4.1 Ultraviolet-Visible Spectroscopy	18
	3.4.2 Fourier Transform Infrared Spectrometer	18
	3.4.3 Resistance Analysis	18
	3.4.4 Scanning Electron Microscopy	19
3.5	PANI/CSA in ammonia detection	20
	3.5.1 Multimeter	20
	3.5.2 Ultraviolet-Visible Spectroscopy	20

3.6	PANL	/CSA sensor performance	21
	3.6.1	Reusability	21
	3.6.2	Long-term stability	21
	3.6.3	Selectivity	21

CHAPTER 4 RESULT AND DISCUSSION

4.1	Synthesis of polyaniline with dopant CSA	
4.2	Preparation of PANI/CSA film	23
4.3	Characterization of PANI/CSA	23
	4.3.1 Ultraviolet-Visible Spectroscopy	23
	4.3.2 Fourier Transform Infrared Spectrometer	24
	4.3.3 Conductivity	25
	4.3.4 Scanning Electron Microscopy	26
4.4	PANI/CSA in ammonia detection	28
	4.4.1 Sensitivity	28
	4.4.2 Ultraviolet-Visible Spectroscopy	29
4.5	PANI/CSA sensor performance	30
	4.5.1 Reusability	30
	4.5.2 Long-term stability	32
	4.5.3 Selectivity	33

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS5.1Conclusion345.2Recommendation35CITED REFERENCES36APPENDICES41CURRICULUM VITAE51

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF PANI/CSA IN AMMONIA DETECTION

Since ammonia is categorized as a toxic gas, development of a new, simple and inexpensive gas detector was put onto the up front desk. It was expected the conducting polymers to be the most reliable material for this gas detector development purpose since it has ease processability and tunable conductivity features. Among the conducting polymers available, polyaniline (PANI) was chosen for this study. PANI was synthesized in the presence of camphorsulfonic acid (CSA) as dopant via chemical oxidation using potassium peroxydisulfate (KPS) as the oxidizing agent. The chemical structure was studied using ultravioletvisible (UV-Vis) spectroscopy and Fourier transform infrared (FTIR). The conducting properties were measured using a multimeter. As the result, the PANI/CSA film possessed conductivity at 3.04×10^{-6} S cm⁻¹. The morphology of the PANI/CSA sample was studied using scanning electron microscopy (SEM). The response sensitivity of the film toward exposure of ammonia at different concentration was evaluated. In the UV-Vis spectrum, it is useful to analyze the influence of ammonia exposure towards the PANI/CSA film. It was evaluated that the film displays highest sensitivity at 80 ppm exposure of ammonia. The film exhibit high selectivity towards ammonia compares to diethyl ether and hexane. However, the film exhibits low reusability.