ISOLATION OF CELLULOSE NANOCRYSTAL FROM OIL PALM BIOMASS WITH DIFFERENT FORMIC ACID HYDROLYSIS TIME

AHMAD AFIQ BIN JUMHURI

Final Year Project Report Submitted In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences University Teknologi MARA

JULY 2017

This Final Year Project Report entitled "Isolation of Cellulose Nanocrystal from Oil Palm Biomass with Different Formic Acid Hydrolysis Time" was submitted by Ahmad Afiq bin Jumhuri, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Ahmad Husaini Mohamed Supervisor B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Nurul Huda Abdul Halim Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Mazni Musa Head of Programme B. Sc. (Hons.) Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date: 7/8/2017

TABLE OF CONTENTS

		Page
ACKNOWLEDGEMENT		iii
TABLE OF CONTENTS		
LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT		vi
		vii
		viii
		iX
ABS	TRAK	X
CHA	APTER 1 INTRODUCTION	1
1.1	Background of study	1
	1.1.1 Nanocellulose	1
	1.1.2 Isolation of cellulose nanocrystal	3
	1.1.3 Oil palm biomass	4
1.2	Problem statement	7
1.3	Significance of study	8
1.4	Objective of study	9
CHA	APTER 2 LITERATURE REVIEW	10
2.1	Cellulose nanocrystal	10
2.2	Acid hydrolysis of biomass to isolate cellulose nanocrystal	13
CHA	APTER 3 METHODOLOGY	17
3.1	Materials	17
	3.2.1 Raw material	17
	3.2.2 Chemical	17
3.2	Methods	17
	3.2.1 Sample preparation	17
	3.2.2 Pretreatment	18
	3.2.3 Formic acid hydrolysis with different hydrolysis time	18
3.3	Characterization	19
	3.3.1 Spectroscopy study by Fourier transform infrared (FTIR)	19
	3.3.2 Field emission scanning electron microscopy analysis	19
	3.3.3 X-Ray diffraction analysis	19

CHAPTER 4 RESULTS AND DISCUSSION	21
4.1 Isolation of cellulose nanocrystal	21
4.2 Characterisation	23 •
4.2.1 FTIR spectrsoscopic analysis	23
4.2.2 Crystallinity index from XRD	28
4.2.3 Morphology of isolated CNC	32
CHAPTER 5 CONCLUSION AND RECOMMENDATION	36
CITED REFERENCES	38
APPENDICES	41
CURRICULUM VITAE	48

-

ABSTRACT

ISOLATION OF CELLULOSE NANOCRYSTAL FROM OIL PALM BIOMASS WITH DIFFERENT FORMIC ACID HYDROLYSIS TIME

Oil palm biomass is a renewable resource that can be manipulated for many applications. Nanocellulose which can be extracted from oil palm biomass is renewable and biodegradable with wide range of possible applications. Cellulose nanocrystal (CNC) was isolated using formic acid hydrolysis with different hydrolysis time from oil palm biomass in the forms of oil palm mesocarp (OPM) and oil palm empty fruit bunch (OPEFB). CNCs isolated from both type of biomass were characterized using Fourier transform infrared (FTIR), X-Ray diffraction (XRD) and field emission scanning electron microscope (FESEM). Percentage yield of cellulose nanocrystals from OPEFB and OPM were around the same range of 28 -41% showing the effect of hydrolysis time. FTIR analysis show peaks of lignin and hemicellulose at peaks 1200cm⁻¹ and 1700cm⁻¹ were completely removed after pretreatment process. XRD spectrum show the difference in crystal properties of the isolated CNC. CNC isolated from OPEFB show higher crystallinity index (60%) compared to that of OPM (55%). The morphology studies using FESEM show that CNC isolated from OPEFB to be globular while CNC from OPM show needle-like structure. Nanocellullose in the form of CNCs were successfully isolated from the study.