DETERMINATION OF HEAVY METALS IN DUST FROM DIFFERENT LEVEL OF STUDENTS' RESIDENTIAL BUILDING

NURUL SHUHADAH BINTI BAHARUDDIN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences University Teknologi MARA

JANUARY 2019

ABSTRACT

DETERMINATION OF HEAVY METALS IN DUST FROM DIFFERENT LEVEL OF STUDENTS' RESIDENTIAL BUILDING

Most students spend their time doing indoor activities. Indoor air pollutants might affect the student's health. The objectives of the study are to determine the concentration of heavy metals in indoor dust from different level of students' residential building and to estimate the potential health risk by using health risk assessment (HRA). The dust samples was collected at three different level of a students' residential building which are level 1, level 4 and level 10. The selected heavy metals studied were lead (Pb), copper (Cu), iron (Fe) and cadmium (Cd). The samples were analyzed by using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The highest concentration of heavy metals is Fe with 1.60 to 3.10 μ gg⁻¹, followed by Cu with 0.64 to 1.00 μ gg⁻¹, Pb with 0.06 to 0.09 µgg¹ and 0.04 µgg¹ to 0.06 µgg⁻¹ for Cd. The overall concentrations of heavy metal were in order of Fe > Cu > Pb > Cd. The results showed that low potential health risks were determined from metal exposure in indoor dust. Moreover, through the survey assessment, most of student does not have any respiratory diseases (87%) although 63% of respondents claimed they were allergic to dust. The accumulation of these heavy metals in different level at students' residential may be influenced by the wind blowing from outdoor environment as well as the distance of level from main sources of heavy metal.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	m
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii

Page

ix

X

CHAP	TER	1	INT	ROL)U(CTION

ABSTRACT

ABSTRAK

1.1	Background of study	1
1.2	Problem statement	2
1.3	Significance of study	3
1.4	Scope and limitation of study	3
1.5	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Air pollution	5
	2.1.1 Indoor air pollution	6
	2.1.2 Dust	7
2.2	Indoor air quality	7
	2.2.1 Street dust	8
	2.2.2 Industries	8
	2.2.3 Indoor material	9
2.3	Heavy metal	9
2.4	Effect to health due to heavy metal contamination	10
	2.4.1 Lead (Pb)	10
	2.4.2 Cadmium (Cd)	11
	2.4.3 Copper (Cu)	11
	2.4.4 Iron (Fe)	12

CHAPTER 3 METHODOLOGY

3.1	Chemical	14
3.2	Equipment and analytical instrument	14
3.3	Sampling location	15
3.4	Sample collection	15
3.5	Sample preparation	16
3.6	Standard preparation	16
3.7	Inductively Coupled Plasma – Optical Emission	17
	Spectroscopy (ICP-OES)	
3.8	Calibration curve	18
3.9	Health risk assessment	18

3.10	Survey Assessment	21
3.11	Quality control	21
CHA	PTER 4 RESULTS AND DISCUSSION	
4.1	Heavy metals concentration	22
	4.1.1 Cd concentration	22
	4.1.2 Cu concentration	23
	4.1.3 Fe concentration	24
	4.1.4 Pb concentration	25
4.2	Potential effect of heavy metal exposure to health	26
4.3	Survey assessment	28
CHA	PTER 5 CONCLUSION AND RECOMMENDATION	31
REFE	ERENCES	
		33
APPE	ENDIX	36

LIST OF TABLES

Table	Caption	Page
2.1	Heavy metal sources and their effects on human bodies	13
3.1	The wavelength of heavy metal analyses using ICP-OES	17
3.2	Regression coefficient for each element analyze by ICP-OES	18
3.3	Reference dose of heavy metal	20
4.1	Potential health risk of heavy metal exposure	28
4.2	Percentage of students that have allergic to dust and duration	29
	of allergic	
4.3	Percentage of students that have respiratory diseases	30