PRODUCTION OF BIODIESEL FROM PALM OIL BY USING CALCIUM OXIDE (CaO) SUPPORTED ON ALUMINA BEADS

NURUL AQILAH BINTI SHAM SHUL BAHRI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

ABSTRACT

PRODUCTION OF BIODESEL FROM PALM OIL USING CALCIUM OXIDE (CaO) SUPPORTED ON ALUMINA BEADS

In this research, the main objectives of this study were to determine the effect of the amount of catalyst loadings on the yield of biodiesel Ca/Al2O3 catalyst without dopant and Ni/Ca/Al₂O₃ catalyst with dopant produced from palm oil. Biodiesel was produced by transesterification of palm oil with methanol catalysed by two types of alumina-supported catalysts. In the view of work, homogenous catalysts have more limitation than heterogeneous catalyst. Homogeneous catalyst has caused great impact to environment and market value. The catalysts were prepared by heating a mixture of alumina beads and calcination in the furnace at 700 °C. Transesterification reactions were carried out at 65 °C using a mixture of palm oil and methanol with various mass of catalyst. Ni/Ca/Al₂O₃ gave the highest maximum yield (12.6%) with the optimum mass of catalyst that was 4 g. Followed by Ca/Al₂O₃ (4.2%) with the mass of catalyst was 3 g. The optimum percentage FAME result at 12.6% Ni/Ca/Al₂O₃ with dopant was higher than to the optimum conversion of percentage FAME for Ca/Al₂O₃ without dopant at 4.2%. The types of fatty acid in palm oil were determined by using gas chromatographymass spectrometry (GC-MS). The fatty acid that determined was palmitic acid, myristic acid and lauric acid. The palmitic acid at retention time 11.687 min followed by 10.183 min for myristic acid and lauric acid at 8.559 min. It can be concluded the percentage of yield or FAMEs for Ni/Ca/Al₂O₃ with dopant higher than Ca/Al₂O₃ without dopant.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS			iii
TABLE OF CONTENTS			iv
LIST OF TABLES			vi
LIST OF FIGURES	-	-	vii
LIST OF ABBREVIATIONS			viii
ABSTRACT			ix
ABSTRAK			v

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significant of Study	3
1.4	Objectives of Study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Biodiesel	6
2.2	Palm oil	7
2.3	Transesterification	7
2.4	Catalyst in Transesterification	9
2.5	Calcium Oxide	12
2.6	Alumina support	15
2.7	FAME composition analysis by GC-MS analysis	16

CHAPTER 3 METHODOLOGY

3.1	Materials	18
	3.1.1 Raw chemicals and reagents	18
	3.1.2 Apparatus	.18
	3.1.3 Instrumentations	19
3.2	Catalysts preparation	19
3.3	Transesterification with CaO support alumina beads	
3.4	Gas Chromatography (GC)	21

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Effect of mass of catalysts on FAME	22
4.2	Influence of optimum mass of catalyst	25
4.3	Influence of support on catalyst	26
4.4	Product analysis of biodiesel (FAME)	27

CHA	PTER 5 CONCLUSI	ON AND RECOMMENDAT	IONS
5.1	Conclusion	-	32
5.2	Recommendation		33
CITED REFERENCES		35	
APP	ENDICES	-	38
CURRICULUM VITAE		47	

.

.

,

.

.

. .

LIST OF FIGURES

.

Figure	Caption	Page
	· ·	
4.1	Effect of the mass of catalysts on the FAME %	23
	yield of biodiesel	
4.2	GC-MS chromatogram of FAME yield of	29
	Ni/Ca/Al ₂ O ₃ for the identified compound in the	
	biodiesel.	
4.3	GC-MS chromatogram of FAME yield of	30
	Ca/Al_2O_3 for the identified compound in the	
	biodiesel.	