SYNTHESIS OF POLYURETHANE FROM OIL PALM CELLULOSE

NOR AFIFAH BINTI KAMARAPANI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

ABSTRACT

SYNTHESIS OF POLYURETHANE FROM OIL PALM CELLULOSE

The biomass waste are mostly generated by Asian countries such as Malaysia and other countries that produce palm oil as economic sources. By using this biomass waste for create new products also can reduce environmental pollution where the old and dead palm oil trees mostly will be burn since it cannot decompose to the soil. This experiment is to synthesis the polyurethane from cellulose by exraction of sawdust from palm oil fronds by using ethanol-toluene to remove essential oil and other subtances. The sawdust then undergoes bleaching process which to remove lignin where sodium chlorite is used as bleaching reagent to make the cellulose in white powder. The white powder cellulose that obtained react with ethylene glycol producing glycoside. Glycoside react with palm oil to form polyols. Toluene diisocyanate (TDI) was used to react with polyols to form polyurethane. Polyurethane that obtained was analyzed by using FTIR. The result shows that polyurethane can be formed by using cellulose of oil palm fronds.

TABLE OF CONTENTS

		Pages				
ACK	NOWLEDGEMENTS	iii				
TABLE OF CONTENTS		iv				
LIST	Γ OF TABLES	v				
LIST OF FIGURES						
LIST	LIST OF ABBREVIATIONS					
ABSTRACT						
ABSTRAK		ix				
CHA	CHAPTER 1 INTRODUCTION					
1.1	Background Of Study	1				
1.2	Problem Statements	3				
1.3	Significance Of Study	5				
1.4	Objectives Of Study	6				
CHA	APTER 2 LITERATURE REVIEW					
2.1	Palm Oil Tree	7				
2.2	Cellulosic Waste	9				
2.3	Polyurethane	11				
2.4	Spectroscopic Prove					
	2.4.1 Fourier Transformed Infrared (FTIR)	13				
	2.4.2 Thermalgravimetric analysis (TGA)	13				

CHAPTER 3 METHODOLOGY

3.1	Materials	14
3.2	Instruments	14
3.3	Research Methodology	
	3.3.1 Grinding and sieving of raw material	14
	3.3.2 Extraction of ethanol toluene	15
	3.3.3 Determination of cellulose	15
	3.3.4 Reaction with ethylene glycol	16
	3.3.5 Synthesis of polyols	16
	3.3.6 Synthesis of polyurethane	17
СНА	PTER 4 RESULT AND DISCUSSION	20
СНА	PTER 5 CONCLUSIONS AND RECOMMENDATIONS	31
CITE	CD REFERENCES	32
APPI	ENDICES	34
CUR	RRICULUM VITAE	37

LIST OF FIGURES

Table	Caption	Page
3.1	Reaction of cellulose to produce glycoside	18
3.2	Reaction of glycoside to produce polyol	17
4.1	FTIR spectrum for cellulose	23
4.2	TGA analysis for cellulose	24
4.3	FTIR spectrum for glycoside	25
4.4	FTIR spectrum for polyols	28
4.5	FTIR spectrum for polyurethane	29