SYNTHESIS AND CHARACTERIZATION OF ACTIVATED CARBON DOPED TITANIUM DIOXIDE NANOPARTICLES FOR SUPERCAPACITOR

MOHD SYAFIQ AFFANDI BIN MOHD RUSDI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2018

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF ACTIVATED CARBON DOPED TITANIUM DIOXIDE NANOPARTICLES FOR SUPERCAPACITOR

AC doped TiO₂ nanoparticles were synthesis via ultrasonic assisted sol-gel method which are utilized as supercapacitor materials. The electrochemical properties of the AC/TiO₂ nanoparticles were investigate using Cyclic Voltammetry (CV) analysis. The crystal structure of the composite has been characterized by X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). The electrochemical measurements reveal that the specific capacitance of 267.910 and 226.190 Fg⁻¹ have been obtained for 20% TiO₂ loading at 50 and 100 mVs⁻¹ respectively with good capacity retention, as it maintained 90% of its original capacitance after 100th subsequent cycles. The XRD pattern confirmed the purity of AC/TiO₂ nanoparticles and the crystallite sizes of AC/TiO₂ in composites were smaller than the undoped samples. The FTIR analysis reveal that the presence of carbonyl group of AC/TiO₂ nanoparticles is advantageous to fast faradaic reactions resulted good capacitance. Therefore, results demonstrated that the AC/TiO₂ nanoparticles is a promising electrode material for supercapacitor application.

х

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
LIST OF SYMBOLS	ix
ABSTRACT	х
ABSTRAK	xi
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problem statement	2
1.3 Significance of study	2 3
1.4 Objectives of study	3
CHAPTER 2 LITERATURE REVIEW	
2.1 History of Supercapacitor	4
2.2 Classification of Supercapacitor	5
2.3 Types of Electrode Material	6
2.4 Activated Carbon As Electrode Material	7
2.5 Activated Carbon Doping	8
2.6 Synthesis Method for Activated Carbon/TiO ₂	10
2.7 Electrochemical And Physicochemical Characterization	11
2.7.1 Electrochemical Characterization	11
2.8 Physicochemical Characterization	12
2.9 Activated Carbon Doped TiO ₂ As Supercapacitor	13

CHAPTER 3 METHODOLOGY 3 1 Materials

3.1 Materials	16
3.2 Preparation of Activated Carbon Doped TiO ₂	16
3.3 Electrochemical Characterization	17
3.3.1 Cyclic Voltammetry (CV)	17
3.4 Physicochemical Characterization	19
3.4.1 X-Ray Diffraction	19
3.4.2 Fourier Transform Infrared Spectroscopy (FTIR)	20

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Characterization of AC doped with TiO ₂ as supercapacitor	21
4.1.1 Cyclic Voltammetry (CV)	21
4.1.2 X-Ray Diffraction (XRD)	26
4.1.3 Fourier Transform Infrared Spectroscopy (FTIR)	32

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	36
5.2 Recommendation	37

CITED REFERENCES	38
APPENDICES	43
CURRICULUM VITAE	44

LIST OF TABLES

Table	Caption	Page
2.1	Summary of electrochemical performance of supercapacitor for different type of material	9
3.1	Different weight ratios of activated carbon added into TiO_2 nanoparticles for the sample preparation	16
4.1	C_{S} value for AC and various ratio of AC/TiO_2 at 50 $mVs^{\text{-1}}$ and 100 $mVs^{\text{-1}}$	23
4.2	Average crystallite size of pure TiO_2 and $ACTiO_2$ at different weight ratios	32
4.3	The peak position and functionalities of pure AC, pure TiO_2 and $ACTiO_2$ samples	35