FABRICATION AND MECHANICAL PROPERTIES OF *MUSA spp*. BLEND WITH POLYPROPYLENE (C₃H₆)n AS POLYMER COMPOSITE

MOHD NAZREE BIN JAMALDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2018

ABSTRACT

FABRICATION AND MECHANICAL PROPERTIES OF *MUSA spp*. BLEND WITH POLYPROPYLENE (C₃H₆)_n AS POLYMER COMPOSITE

Banana (*Musa spp.*) is a food very common in Asia and the trunk has a great mechanical quality. Banana trunk is very suitable raw material to be used in production of polymer composite or bioplastic made up of natural composite. The objective of the research is to create a bioplastic from the mix of banana trunk or (*Musa spp.*) pseudostem and Polypropylene (C_3H_6)_n. The plastic was prepared by mixing banana trunk fiber and polypropylene using rheomixer at 180°C and 100 rpm for 10 minutes. The mixture then was casted into molding plate and being press by hot press machine at 180°C for 6 minutes. After that the mixture undergo another press using cold press machine at 40°C for another 6 minutes. The plastic then tested using universal testing machine (Instron 5569) for its tensile strength, elongation at break and Young's modulus to obtain the mechanical properties of plastic. The maximum tensile strength, elongation at break and Young's modulus obtained was 5.14 MPa, 0.52% elongation and 1256.86 MPa with all using 50% of banana trunk fiber.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
ABSTRACT	viii
ABSTRAK	ix

CHAPTER 1 INTRODUCTION

1.1	Background of Study		1
1.2	Problem Statement		3
1.3	Objective of Study	<i>x</i>	4
1.4	Significant of Study		4

CHAPTER 2 LITERATURE REVIEW

2.1	Structures and Characteristics of Banana Pseudostem	6
2.2	Characteristics of Polypropylene as a Plasticizer	7
2.3	Current Bioplastic Technology	9

CHAPTER 3 METHODOLOGY

3.1	Materials	10
3.2	Preparation of Banana (Musa spp.) Starch	10
3.3	Banana (Musa spp.) Starch and Polypropylene Blend	11
3.4	Sample Formation	12
3.5	Validation of The Characteristics of Fabricated Bioplastic	13
	3.5.1 Mechanical Properties	13
CHA	PTER 4 RESULTS AND DISCUSSION	
4.1	Introduction	14
4.2	Mechanical Properties	14
CHA	PTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1	Conclusion	23
5.2	Recommendation	24
CITE	D REFERENCES	25
CURI	RICULUM VITAE	28

LIST OF FIGURES

Figure	Caption	Page
3.1	Flow chart of the formation of sample	12
4.1	Tensile strength graph from tensile testing	16
4.2	Elongation percentage of samples	17
4.3	Young's modulus of samples	18
4.4	Sample Using Banana fibre and Polypropylene	20
4.5	Comparison between Expected Value vs Real Value	21

LIST OF ABBREVIATIONS

PP : Polypropylene

mm : milimeter

°C : Degree of Celsius

MPa : Megapascal

rpm : Revolution per minit

rev/min : Revolution per minit