FACILE SYNTHESIS OF ACTIVATED CARBON/ZINC OXIDE NANOSTRUCTURE FOR SUPERCAPACITOR APPLICATION

HANIFA BINTI IBNO

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty Of Applied Sciences UniversitiTeknologi MARA

ABSTRACT

FACILE SYNTHESIS OF ACTIVATED CARBON/ZINC OXIDE NANOSTRUCTURE FOR SUPERCAPACITOR APPLICATION

For the first time, supercapacitor has been made-up by making use of nanostructured activated carbon (AC) doped with zinc oxide (ZnO) composite electrodes. Zinc oxide nanostructure was synthesized by the sol-gel method using conventional Hexamethylenetetramine (HMTA) reagent as the reducing agent. The objective of this thesis is to prepare and characterize activated Carbon/Zinc Oxide nanostructures and to evaluate the effect of Zinc Oxide addition on the super capacitive performance of activated carbon. The composites have been characterized by X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 1 M H₂SO₄ electrolyte. The AC/ ZnO nanocomposite electrode showed a specific capacitance of 398 F/g at scan rate 50 mV/s. It has been establish that the AC/ZnO have excellent electrochemical reversibility and capacitive characteristics in 1 M H₂SO₄ electrolyte. It has also been observed that the specific capacitance is constant up to 100 cycles at all current densities.

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREAVIATIONS	viii
ABSTRACT	xi
ABSTRAK	xii
CHAPTER 1 INTRODUCTION	
1.1 Background study	1
1.2 Problem Statement	3
1.3 Significance of Study	4
1.4 Scope of Work	5
1.5 Objectives of Study	5
CHAPTER 2 LITERATURE REVIEW	
2.1 Introduction	6
2.2 Nanostructure Materials	6
2.3 Overview of Carbon Material	7
2.4 Zinc Oxide Nanomaterial	8
2.4.1 Properties of Zinc Oxide	8
2.4.2 Synthesis Technique	9
2.5 Doping of Activated Carbon with Zinc Oxide	11
2.6 Supercapacitive Performance of Various Materials	12
CHAPTER 3 METHODOLOGY	
3.1 Introduction	14
3.2 List of Materials	15
3.3 Synthesis of Zinc Oxide (ZnO) via Sol Gel Method	15
3.4 Preparation of AC/ZnO by Ultrasonic Assisted Sol Gel Method	17
3.5 Electrochemical Characterization	18
3.6 Physico-Chemical Characterization	18
3.6.1 X-ray Diffraction (XRD)	19
3.6.2 Fourier Transform Infrared Spectroscopy (FTIR)	20

CHAPTER 4 RESULTS AND DISCUSSIONS	
4.1 Characterization of the ZnO doped with AC as supercapacitor	22
4.1.1 Cyclic Voltammetry	22
4.1.2 XRD analysis	27
4.1.3 FTIR analysis	32
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1 Introduction	36
5.2 Conclusion	36
5.3 Recommendations	37
CITED REFERENCES	39
APPENDICES	43
CURRICULUM VITAE	46

LIST OF TABLES

TABLE	CAPTION	PAGE
2.1	Synthesis technique of ZnO	10
2.2	Electrochemical performance for different types of material	13
3.1	Different weight ratios of ZnO added into AC for the sample preparation	17
3.2	List of physico-chemical characterization method	19
4.1	Cs value for AC and several ratio of AC/ZnO at 50 mV/sand 100 mV/s	25
4.2	Average crystallite size (D) of pure ZnO and several ratio of AC/ZnO	31
4.3	Functionalities for every peak in FTIR Analysis	35