STUDY ON PHYSICAL AND STRUCTURAL PROPERTIES OF NEODYMIUM DOPED LITHIUM BORO-TELLURITE GLASSES

AHMAD RIDZWAN BIN AB RAHIM

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2018

ABSTRACT

STUDY ON PHYSICAL AND STRUCTURAL PROPERTIES OF NEODYMIUM DOPED LITHIUM BORO-TELLURITE GLASSES

Glasses with chemical composition of $(70.0)B_2O_3$ - $(5.0)TeO_2$ -(25.0-x) Li₂CO₃₋ xNd₂O where x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 mol% are prepared by melt quenching technique. By varying the proportion of Li₂CO₃ and Nd₂O₃, the effect of this chemical to the lithium boro-tellurite can be investigate in term of physical properties such as density, molar volume and oxygen packing density (OPD). The structural properties were measured by using X-ray Diffraction (XRD) technique and Fourier Tranform Infrared (FTIR) spectroscopy. In this work, generally density and oxygen packing density are found increase while molar volume is decrease as the concentration of neodymium oxide is increases. On the other hand, the amorphous nature was proved by XRD technique and there are presence of Nd-O, Te-O, B-O and OH functional group of glass in FTIR spectra.

TABLE OF CONTENTS

		Page
AC	KNOWLEDGMEMENTS	Iii
TABLE OF CONTENTS		Iv
LIST OF TABLES		Vi
LIST OF FIGURES		Vii
LIST OF ABBREVIATIONS		Viii
ABSTRACT		Ix
ABS	STRAK	X
CHA	APTER 1 INTRODUCTION	
1.1	Introduction	1
1.2	Background of study	2
1.3	Problem statement	6
1.4	Objectives of study	7
1.5	Significance of study	8
		*
CHA	APTER 2 LITERATURE REVIEW	
2.1	Historical background of glass	9
	2.1.1 Characteristic of glass	10
2.2	Glass composition	11
	2.2.1 Glass former	11
	2.2.2 Glass modifier	12
	2.2.3 Dopant salts	12
2.3	Glass formation process	13
2.4	Chemical composition of glass	14
	2.4.1 Boron oxide	14
	2.4.2 Tellurium(IV) oxide	15
	2.4.3 Lithium oxide	15
	2.4.4 Neodymium(III) oxide	16

CHAPTER 3 METHODOLOGY

3.1	Introduction	18
3.2	Sample preparation	18
	3.2.1 Description for sample preparation	20
3.3	Sample characterization	22
	3.3.1 Density measurement	22
	3.3.2 Molar volume	22
	3.3.3 Oxygen packaging density	23
	3.3.4 X-ray Diffraction (XRD) Spectroscopy	23
	3.3.5 Fourier Transforms Infrared Spectroscopy (FTIR)	24

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	26
4.2	Glass sample	26
4.3	Physical properties	27
	4.3.1 Density, molar volume and oxygen packing	27
	density	
4.4	Structural properties	32
	4.4.1 X-ray Diffraction (XRD) analysis	32
	4.4.2 Fourier Transform Infrared Spectroscopy (FTIR)	33

CHAPTER 5 CONCLUSION AND

RECOMMENDATIONS

5.1	Conclusion	36
5.2	Recommendation	37
CITED REFERENCES		38
APF	PENDICES	43
CUH	RRICULUM VITAE	51

.

LIST OF FIGURES

Figure	Caption	Page
2.1	Structure of crystalline and amorphous solid	10
2.2	Structure of glass former network	11
2.3	Structure of modifier network in glass	12
2.4	Volume-temperature diagram of glass formation	13
3.1	Flowchart of the sample procedure and characterization	21
3.2	Electronic Densimeter MD-300S balance	23
3.3	X-ray diffraction apparatus	24
3.4	Fourier Transforms Infrared Spectroscopy	25
4.1	Glasses with different mol% Nd ₂ O ₃	27
4.2	Variation of density and molar volume of Neodymium doped lithium boro-tellurite	31
4.3	Variation of OPD of neodymium doped lithium boro- tellurite glass	31
4.4	XRD pattern of neodymium oxide doped lithium boro- tellurite glass	32
4.5	FTIR Spectra of neodymium oxide doped lithium boro- tellurite	33