ACTIVATED CARBON: PREPARATION, CHARACTERIZATION AND ADSORPTION CAPACITY

NOR HAZIQAH BINTI ABD HAFIFF

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Science Universiti Teknologi MARA

JANUARY 2016

This Final Year Project Report entitled "Activated Carbon: Preparation, characterization and adsorption capacity" was submitted by Nor Haziqah Binti Abd Hafiff, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

Nurul' Ain Binti Jamion Supervisor Faculty of Applied Science Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Sheikh Ahmad Izaddin B. Sheikh Mohd Ghazali Project Coordinator B. Sc. (Hons.) Chemistry Faculty of Applied Science Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan Mazni Musa Head of Programme School of Chemistry And Environment Faculty of Applied Science Universiti Teknologi MARA Kuala Pilah Campus 72000 Kuala Pilah Negeri Sembilan

Date: _____

TABLE OF CONTENTS

1.1	Background of study		
1.2	Problem statement		
1.3	Objectives		
1.4	Significant of study		
1.5	Scope	of study	5
CHA	PTER 2	2 LITERATURE REVIEW	
2.1	Activa	ated carbon	6
	2.1.1	Preparation of activated carbon	7
2.2	Date S	Date Stones	
2.3	Surfac	ctants	10
	2.3.1	Triton X-100 (TX-100)	12
	2.3.2	Centyltrimethylammonium Bromide (CTAB)	13
2.4	Critica	al Micelle Concentration (CMC)	14
2.5	Adsorption		16
	2.5.1	Solid-Gas Adsoption	17
		2.5.1.1 Brunauer, Emmett and Teller (BET) surface area	18
		2.2.1.2 Type of isotherm for Solid-Gas Adsorption	20
	2.5.2	Solid-Liquid Adsorption	22
		2.5.2.1 Adsorption isotherm for solid-liquid adsorption	23
2.6	Methods of Characterization		
	2.6.1	Fourier – Transform Infrared Spectrometer (FTIR)	25
	2.6.2	Gravimetric Analysis	25
	2.6.3	Field Emission Scanning Electron Microscope (FESEM)	26
	2.6.4	Energy – Dispersive X-ray Spectroscopy (EDX)	26
	2.6.5	Nitrogen Gas Adsorption Analysis	27

CHAPTER 3 METHODOLOGY

ACKNOWLEDGEMENT

 TABLE OF CONTENTS

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

LIST OF TABLES

ABSTRACT

ABSTRAK

LIST OF FIGURES

3.1 Materials

28

Page

iii

iv

vi

vii

viii

ix

Х

	3.1.1	Raw materials	28
	3.1.2	Chemicals	28
	3.1.3	Apparatus	28
3.2	Prepar	ration	29
	3.2.1	Preparation of activated carbon	29
3.3	Chara	cterization of Prepared Activated Carbon	30
	3.3.1	Fourier – Transform Infrared Spectrometer (FTIR)	30
	3.3.2	Gravimetric Analysis	30
	3.3.3	Field Emission Scanning Electron Microscope (FESEM)	
		And Energy – Dispersive X-ray Spectroscopy (EDX)	32
	3.3.4	Nitrogen Gas Adsorption Analysis	32
3.4	Adsorption Properties at Solid-Liquid Interphase		
	3.4.1	Preparation of calibration curve for CTAB and TX-100	35
	3.4.2	Adsorption capacity of CTAB	36
	3.4.3	Adsorption capacity of TX-100	36
3.5	Effect of concentration on the adsorption of surfactants onto		
	DAC		37
	3.5.1	Preparation of concentrations effect calibration curve	
		for CTAB	37
	3.5.2	Preparation of concentrations effect calibration curve	
		for TX-100	38
	3.5.3	Effect of surfactants concentrations (CTAB and TX-100)	
		on the adsorption capacity	40

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Preparation of Activated Carbon from Date Stones		42
4.2	Characterization of Prepared DAC		43
	4.2.1	Fourier – Transform Infrared Spectrometer (FTIR)	43
	4.2.2	Gravimetric Analysis	45
	4.2.3	Field Emission Scanning Electron Microscope (FESEM)	46
	4.2.4	Energy – Dispersive X-ray Spectroscopy (EDX)	49
	4.2.5	Nitrogen gas Adsorption Analysis	50
	4.2.6	Adsorption capacity of surfactants onto prepared DAC	52
	4.2.7	Effect of surfactants concentrations (CTAB and TX-100)	
		on the adsorption capacity	54

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion

5.1	Conclusion	56
5.2	Recommendations	58

CITED REFERENCES	60
APPENDICES	66
CURRICULUM VITAE	81

ABSTRACT

ACTIVATED CARBON: PREPARATION, CHARACTERIZATION AND ADSORPTION CAPACITY

Surface-active agent or also known as surfactants was one of water pollutant that can lead to deterioration of environment. In this study, activated carbon was prepared from date stones (DAC) by using phosphoric acid as an activating agent. The activation process was done at 500 °C for two hours. The prepared activated carbon, DAC was characterized by Fourier-Transformed Infrared Spectrometer (FTIR), gravimetric analysis, Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and nitrogen adsorption at 77 K. The BET surface area of DAC was 1187.6844 m²/g. The adsorption capacity of surfactants, (CTAB and TX-100) and the effects of concentration (CMC) also were determined. This study showed that the adsorption capacity of CTAB (23.0724 mg/g) onto the prepared activated carbon, DAC was greater than TX-100 (11.3868 mg/g). The adsorption process between surfactants (CTAB and TX-100) onto the prepared activated carbon, DAC was physisorption through electrostatic forces (Wan der Wall forces). Thus, this study showed that date stones have a greater tendency as microporous activated carbon and also as an adsorbent to remove surfactants.