WASTE COOKING OIL-BASED POLYURETHANE SOLID POLYMER ELECTROLYTE: THE EFFECT OF ISOCYANATE STRUCTURE

NOR AZMIERA BINTI KAMARULZAMAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

WASTE COOKING OIL-BASED POLYURETHANE SOLID POLYMER ELECTROLYTE: THE EFFECT OF ISOCYANATE STRUCTURE

Waste cooking oil-based polyurethane was prepared via solvent-free method using waste cooking oil based polyol (WCO-p) and 4.4- diphenylmethane diisocyanate (MDI) or 1,6- hexamethylene diisocyanate (HDI) with lithium trifluoromethane sulfomide (LiTFSI) salt and ethylene carbonate (EC) as plasticizer. The polyurethane films were examined using Fourier Transform Infrared Spectroscopy (FTIR) and Electrochemical Impedance (EIS), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD). The ionic conductivity from EIS result of the polyurethane film mixed with MDI and salt are higher which is 5.76 x10⁻⁶ Scm⁻¹ compared to film mixed with HDI and salt 6.03 x10⁻⁷ Scm⁻¹. This was proved by XRD analysis which is more amorphous than PU-HDIs. However the glass transition is highest temperature due to steric hindrance of benzene ring in hard segment for PU-MDIs. FTIR analysis showed the absence of the band in the range of 2260 to 2310 cm⁻¹ proves there is no free NCO group that confirms the urethane reaction is complete in the structure of polymer. However that band is presence at 2276.05 cm⁻¹ in PU-MDI spectrum showed not all of the isocyanate groups reacted during polymerization.

TABLE OF CONTENTS

			Page
ACK	KNOWLEDGEMENTS		iii
TAB	i	iv	
LIST		vi	
LIST		vii	
LIST OF ABBREVIATIONS ABSTRACT			viii
			ix
ABS	TRAK		х
CHA	APTER 1 INTRODUCTION		
1.1	Background of study		1
1.2	Problem statement		2
1.3	Significance of study		3
1.4	Objectives		4
CHA	APTER 2 LITERATURE REVIEW		-
2.1	Solid polymer electrolyte		2
2.2	Polyurethane		/
2.3	Vegetables oil based polyol		9
2.4	Waste cooking oil based polyol		13
2.5	The effect of disocyanate structure		17
СН	PTER 3 METHODOLOGY		
3.1	Chemicals		21
3.2	Methodology		22
0.2	3.2.1 Collection and pretreatment of waste cooking oil		23
	3.2.2 Synthesis of waste cooking oil-based polyol		24
	3.2.2 Synthesis of polyurethane-based solid polymer		25
	electrolyte		25
3.3	Characterization		26
	3.3.1 Determination of iodine value		26
	3.3.2 Determination of hydroxyl value		27
	3.3.3 Fourier transform infrared (FTIR)		28
	3.3.4 Electronic impendance Spectroscopy (EIS)		28
	3.3.5 Differential scanning calorimetry (DSC)		29
	3 3 6 X-ray diffraction (XRD)		29

CHAPTER 4 CONCLUSION AND RECOMMENDATIONS

4.1	Waste	cooking oil (WCO) and waste cooking oil-polyol (WCO-p)	30		
	characterization				
	4.1.11	Physical properties of WCO and WCO-p	30		
	4.1.2	odine value and hydroxyl value	31		
	4.1.3	Characterization of WCO and WCO-p using fourier	32		
		transform infrared			
4.2	Waste	cooking oil-based polyurethane solid polymer electrolyte	35		
	(SPE) characterization				
	4.2.1	Physical properties of WCO based SPE	35		
	4.2.2	Fourier transform infrared (FTIR)	37		
	4.2.3	Electronic impedance Spectroscopy (EIS)	41		
ð.	4.2.4	Differential scanning calorimetry (DSC)	42		
	4.2.5	X-ray diffraction (XRD)	44		
СНА	PTER 5	CONCLUSION AND RECOMMENDATIONS	46		
CITE	ED REF	ERENCES	48		
APPI	ENDICI	ES	52		
CUR	RICULU	UM VITAE	58		

LIST OF TABLES

Table	Caption	Page
2.1	The important of properties of polyol used in polyurethane industries	11
2.2	The reaction of vegetable oil based polyol	12
2.3	The reactions to synthesize WCO based polyol	16
2.4	The comparison of aromatic and aliphatic	18
2.5	The chemical structure of isocyanate	19
2.6	The effect of isocyanate structure and mechanical properties of PU	20
3.1	The list of chemical used	21
3.2	Characterization of purified waste cooking oil	23
3.3	Characterization of polyol	25
3.4	Characterization of polyurethane based solid polymer electrolyte	26
4.1	The physical properties of waste cooking oil (WCO) and waste cooking oil-based polyol (WCO-p)	31
4.2	The iodine and hydroxyl value of WCO and WCO-p	32
4.3	The wavenumber of functional group in WCO and WCO-p	33
4.4	The composition of polyurethane based solid polymer electrolyte films.	35
4.5	FTIR vibration frequencies for PU-SPE films	38
4.6	The effect of isocyanate structure on ionic conductivity	41
4.7	Glass transition temperature for PU-SPE films	42