SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF BIDENTATE SCHIFF BASE LIGANDS

MOHAMAD BADRUL HAKIM MOHD ROSLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Science Universiti Teknologi MARA

JANUARY 2016

This Final Year Project Report entitled "Synthesis, Characterization and Antimicrobial Activities of Bidentate Schiff Base Ligands" was submitted by Mohamad Badrul Hakim Mohd Rosli, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry, in the Faculty of Applied Science, and was approved by

> Nurul Huda Abd Halim Supervisor School of Chemistry and Environment Faculty of Applied Science Universiti Teknologi MARA 72000 Kuala Pilah, Negeri Sembilan

Sheikh Ahmad Izaddin Sheikh MohdMazni MusaGhazaliHead of ProgrammeProject CoordinatorSchool of Chemistry and EnvironmentB.Sc.(Hons.) ChemistryFaculty of Applied ScienceFaculty of Applied ScienceUniversiti Teknologi MARAVniversiti Teknologi MARA72000 Kuala Pilah, Negeri Sembilan

Date:_____

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viiiVIII
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Ligand	1
	1.1.1 Monodentate ligand	1
	1.1.2 Polydentate ligand	2
1.2	Antimicrobials	2
1.3	Statement of problems	3
1.4	Objectives of the study	
1.5	Scope of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Schiff base ligand	5
2.2	Azomethine linkage in the Schiff base ligand	6
2.3	Previous works of the Schiff base ligand	7
2.4	Characterization methods	10
	2.4.1 Fourier Transform-Infrared Spectroscopy (FT-IR) analysis	10
	2.4.2 Proton Nuclear Magnetic Resonance (¹ H NMR) Spectrum	
	analysis	10
2.5	Schiff base ligand for biological activities	11

CHAPTER 3 METHODOLOGY

3.1	Introduction		13
3.2	Procee	dures	14
	3.2.1	Synthesis of Schiff base ligand 4-[(4-	
		methylbenzylidene)amino] phenol (BL1)	14
	3.2.2	Synthesis of Schiff base ligand 4-hydroxybenzylideneaniline	
		(BL2)	15
3.3	Antim	icrobial assay	16
	3.3.1	Preparation of agar	16
	3.3.2	Culturing microbe of Nutrient Broth (NB)	16
	3.3.3	Disc diffusion method	17
	3.3.4	Control test	17

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Introduction	18	
4.2	Synthesis and characterization of bidentate Schiff base ligand,		
	4-[(4 methylbenzylidene)amino]phenol (BL1)	18	
	4.2.1 Physico-chemical properties of BL1	19	
	4.2.2 Analysis of infrared spectrum of BL1	20	
	4.2.3 Analysis of ¹ H NMR	21	
4.3	Synthesis and sharacterization of 4-hydroxybenzylideneaniline		
	(BL2)	22	
	4.3.1 Physico-chemical properties of BL2	23	
	4.3.2 Analysis of infrared spectrum of BL2	23	
	4.3.3 Analysis of ¹ H NMR	24	
4.4	Determination of the type of Schiff base ligand	25	
4.5	Antimicrobial assay	25	
CHA	APTER 5 CONCLUSION AND RECOMMENDATIONS	28	
	ED REFERENCES	30	
	ENDICES	34	
CUR	RICULUM VITAE	39	

ABSTRACT

SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITIES OF BIDENTATE SCHIFF BASE LIGANDS

Schiff bases have interesting coordination behaviour due to the presence of several coordination donor atoms. In this research, two Schiff base ligands 4-[(4methylbenzylidene)amino]phenol (BL1) and 4-hydroxybenzylideneaniline (BL2) ligand have been synthesized by condensation reaction between 4-aminophenol with 4-methylbenzaldehyde and 4-hydroxybenzaldehyde with aniline in a 1:1 molar ratio. Both of these Schiff base ligands were obtained as pale yellow crystal solid. The percentage yield of the Schiff base ligand BL1 was 66.45 % while the Schiff base ligand of BL2 was 57.89 %. The melting point of BL1 and BL2 were 156 °C and 152 °C respectively. Those Schiff base ligands were then characterized by using CHNS analyzer, FT-IR, and ¹H NMR. Infrared and proton nuclear magnetic resonance spectroscopic data revealed that the ligands are N, O bidentate ligands. Biological activities of these ligands were tested against Gramnegative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis). It was found that the BL1 was the most effective against the bacteria with zone of inhibition of 25 mm and 17 mm respectively. However, BL2 does not possess any inhibition zone against E. coli but can be used against B. subtilis with the zone of inhibition of 22 mm.