SOLAR PHOTOCATALYTIC DEGRADATION OF ORANGE G DYE BASED ON ZINC OXIDE

.

NUR AISYAH BINTI HAMZAH

Final Year Project Report Submitted In Partial Fulfilment of the Requirements for the Degree of Bachelor Science (Hons.) Chemistry In the Faculty of Applied Science Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

SOLAR PHOTOCATALYTIC DEGRADATION OF ORANGE G DYE BASED ON ZINC OXIDE

Solar photocatalytic was a widely used of energy sources that combine the solar or sunlight and chemical to acquire the chemical reaction The objective of the study are to investigate the degradation of OG under different condition with sunlight and without sunlight as the irradation sources. It also to evaluate the efficiency of solar photocatalytic degradation in the presence of radical scavengers and in the presence of co - catalyst. . Based on this study, to remove the color of wastewater pollution, a photocatalytic process was used to examine the rate of Orange G (OG) degradation efficiency by using a zinc oxide (ZnO) as semiconductor and illuminated by solar light. The OG was used as an example of dye and the degradation process are totally depends on the OG decreasing color. From this degradation, the chemical reaction between the semiconductor and dve can be illustrated and it undergoes the definition of solar photocatalytic itself. The chemical reaction was formed when [•]OH radical was attacked towards the OG or heteropolyaromatic and leading to hydroxylated metabolites. The reaction also involved when the ZnO semiconductor reacts with addition of energy such as solar irradation to release heat. At this time, the holes of semiconductor trapped the "OH radical to form a simple compound. According to the observation of experiment, the OG solution was almost completely degraded by the solar irradation, but the OG slightly degraded when the solar light was absence. In the presence of radical scavengers, the inhibition of degradation of OG process are failed to occurs. It is the same with the presence co - catalyst, the speed up degradation process are failed to occurs.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	111
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	x
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background Of Study	1
1.2	Problem Statement	3
1.3	Significance Of Study	3
1.4	Objective Of Study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Textile Industry Wastewater	5
2.2	Dye	5
	2.2.1 Azo Dye	6
2.3	Treatment Method	8
2.4	Semiconductors	9
	2.4.1 Co – Catalyst	9
	2.4.2 Radical Scavengers	10
2.5	Solar Light	11

CHAPTER 3 METHODOLOGY

3.1	Materials	12
3.2	Orange G Dye	12

3.3	Zinc Oxide	12
3.4	Sulphuric Acid Solution	13
3.5	Metal Ion Sample	13
3.6	Radical Scavengers	14
	3.6.1 Sodium Chloride Solution	14
	3.6.2 Sodium Carbonate Solution	14
	3.6.3 Sodium Bicarbonate Solution	15
3.7	Methods	15
	3.7.1 Photocatalytic Degradaton Process	15
	3.7.1.1 The Effect Of Solar Irradation In The Rate	16
	Of Degradation	
	3.7.1.2 The Effect Of Radical Scavengers In The	16
	Rate Of Degradation	
	3.7.1.3 The Effect Of Metal Ion In The Rate	17
	Degradation	

CHAPTER 4 RESULT AND DISCUSSION

4.1	Standard Measurement	18
4.2	The Effect Of Solar Irradation In The Rate Of	20
	Degradation	
4.3	The Effect Of Radical Scavengers In The Rate Of	21
	Degradation	
	4.3.1 Degradation Efficiency On CO ₃ ²⁻ Precess	22
	4.3.2 Degradation Efficiency On HCO ₃ ⁻ Process	23
	4.3.3 Degradation Efficiency On Cl ⁻ Process	25
4.4	The Effect Of Metal Ion In The Rate Of Degradation	26
	4.4.1 Degradation Efficiency Of Mn ²⁺ Process	27
	4.4.2 Degradation Efficiency Of Cu ²⁺ Process	28
	4.4.3 Degradation Efficiency Of Fe ²⁺ Process	28
4.5	Effect Of pH To Orange G Dye	29

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 30

LIST OF TABLES

8

Table	Caption	Page
3.1	List Of Metal Ion Used In Experiment	13
4.1	Standard Measurement Table	19
4.2	Degradation Efficiency Of OG Dye In Different Condition.	21
4.3	Data CO_3^{2-} Degradation Efficeincy	22
4.4	Data HCO ₃ Degradation Efficeincy	24
4.5	Data Cl ⁻ Degradation Efficeincy	25
4.6	Data Mn ²⁺ , Cu ²⁺ , and Fe ²⁺ Degradation Efficeincy	28