EFFECT OF ZrO₂ ON THE STRUCTURE, HARDNESS AND HUMIDITY SENSING PROPERTIES OF TiO₂-ZrO₂

SITI NURUL SHAHMIMIE SULAIMAN

Final Year Project Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Physics In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

ABSTRACT

EFFECT OF ZrO₂ ON THE STRUCTURE, HARDNESS AND HUMIDITY SENSING PROPERTIES OF TiO₂-ZrO₂

The influence of ZrO_2 on the structural, hardness and humidity sensing properties of the TiO₂ ceramics were investigated. The samples were prepared by the conventional ceramic method. The samples were characterized on their structure, hardness and humidity sensitivity. Analysis on the hardness properties has been carried out using Vickers hardness and bulk density method. It shows that hardness of samples do not affected by the bulk density. Field Emission Scanning Electron Microscopy (FESEM), X-ray Diffractometer (XRD) and impedance spectroscopy method were used for characterization the microstructure and sensing properties of samples. The average grain size shows significant difference between each samples. The XRD analysis support the characteristic of the average grain size of the samples. The ratio of impedance indicate the sensitivity of samples. Sample with ZrO_2 addition of 20 wt% have the highest ratio of impedance and sensitivity for ceramic composite rather than other samples at two different %RH which is 56 %RH and 27 %RH.

TABLE OF CONTENTS

			Page	
ACK	NOWL	EDGEMENTS	iii	
	TABLE OF CONTENTS			
	LIST OF TABLES			
	LIST OF FIGURES			
	LIST OF ABBREVIATIONS			
	FRACT		viii	
	FRAK		ix	
	and another services of	INTRODUCTION		
1.1		round of study and problem statement	1	
1.2	-	cance of study	4	
1.3	Object	ive of study	4	
СЦА	DTED 1	LITERATURE REVIEW		
2.1	Ceram		5	
2.1	2.1.1		5	
2.2		ics based sensing materials	8	
2.2	2.2.1	TiO_2 as sensing materials	9	
	2.2.2		10	
		<u>-</u>		
	PTER 3	B METHODOLOGY		
3.1	•	es preparation	12	
3.2	-	es characterization		
		Density measurement of TiO ₂ -ZrO ₂	13	
		Hardness measurement of TiO ₂ -ZrO ₂	13	
	3.2.3	Structure and phase determination of TiO ₂ -ZrO ₂	15	
	3.2.4	Morphology and microstructure investigation	15	
	3.2.5	Impedance measurement and humidity sensitivity	16	
		determination		
СЦА	DTED A	RESULTS AND DISCUSSION		
4.1		ensity of TiO ₂ -ZrO ₂	18	
4.2		ess analysis of TiO_2 -ZrO ₂	19	
4.3		and crystal structure of TiO_2 -ZrO ₂	20	
4.4		ology and microstructure of TiO_2 -ZrO ₂	22	
4.5		ance analysis for humidity sensing properties of TiO_2 -ZrO ₂	24	
	-			
СНА	PTER 5	5 CONCLUSION AND RECOMMENDATIONS	29	
CITE	CITED REFERENCES			
APPI	APPENDICES			
CUR	CURRICULUM VITAE			

LIST OF FIGURES

Figure	Caption	Page
3.1	Schematic indentation fracture pattern of an idealized Vickers Palmqvist crack system.	14
3.2	Nyquist diagram and the contributions of various properties.	17
4.1	Bulk density of different TiO_2 -ZrO ₂ composites by addition difference wt% of ZrO ₂ .	18
4.2	The change of Vickers hardness against addition of ZrO ₂ .	19
4.3	X-ray diffraction patterns of TiO_2 -ZrO ₂ ceramic sintered at 1300 °C.	21
4.4	Field emission scanning electron microscopy micrographs of TiO_2 -ZrO ₂ ceramics pellets with different weight percentage composites at magnification 10000x with addition of ZrO ₂ .	23
4.5	Nyquist plot of TiO_2 -ZrO ₂ ceramic pellets measured under relative humidity of 56 %RH.	25
4.6	Nyquist plot of TiO_2 -ZrO ₂ ceramic pellets measured under relative humidity of 27 %RH.	26
4.7	Bode plot of TiO_2 -ZrO ₂ ceramic pellets of real imaginary against frequency for 56 %RH and 27 %RH.	27
4.8	Ratio of Z'dry/Z'wet against frequency.	28

CHAPTER 1

INTRODUCTION

1.1 Background of study and problem statement

A sensor is a device that detects and responds to some type of input from physical environment such as light, heat, motion, moisture and pressure. Sensors have become an integral part of all advance technology in recent years (Jain *et al.*, 1999). Pressure sensors, temperature sensors, biosensors, gas sensors, motion sensors and humidity sensors are few examples of sensors (Chen and Lu, 2005; Patel *et al.*, 2012).

Humidity sensing materials have been extensively studied as it is the heart of humidity control devices. Humidity sensors needs to be studied because it is important in human life and industrial applications amongst assorted type of sensors (Kim *et al.*, 2005; Traversa, 1995; Rittersma, 2002; Chen and Lu, 2005; Zhang *et al.*, 2010). Humidity sensor senses, measured and reports the relative humidity in the air, and humidity measurement is important in the modern industrial applications (Tripathy *et al.*, 2014; Su *et al.*, 2015; Sikarwar and Yadav, 2015; Jung and Ji, 2014).

Ceramics are preferable rather than polymers and composites as humidity sensing materials because of their chemical and physical stability in the environment, which is suitable for applications, processing ability and