IDENTIFICATION AND ANTIBIOTIC SUSCEPTIBILITY OF *Enterococcus* spp. FROM RAW COW MILK AND RAW GOAT MILK

SITI NOR ZALEHA BINTI MANAF

BACHELOR OF SCIENCE (HONS.) BIOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2014

This Final Year Project Report entitled "Identification and Antibiotic Susceptibility of *Enterococcus* spp. From Raw Cow Milk and Raw Goat Milk" was submitted by Siti Nor Zaleha binti Manaf, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Dr. Noorlis binti Ahmad Supervisor B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Sarini binti Abdul Wakid Project Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Dr. Nor 'Aishah binti Abu Shah Head of Pure Science School B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date : JANUARY 2014

TABLE OF CONTENTS

		PAGE
ACK	NOWLEDGEMENT	iii
TABI	LE OF CONTENTS	iv
LIST	OF TABLES	vi
LIST	OF FIGURES	vii
LIST	OF ABBREVIATIONS	viii
ABST	RACT	ix
ABST	'RAK	X
10 -		
CHA	PTER 1: INTRODUCTION	
1.1	Background of Study	4
1.2	Problem Statement	5
1.3	Significance of Study	5
1.4	Objectives of the Study	6
CHA	PTER 2: LITERATURE REVIEW	
2.1	Enterococcus spp.	7
	2.1.1 Taxonomy	7
	2.1.2 Prevalence of <i>Enterococcus</i> spp	9
2.2	Pathogenicity	10
2.3	Antibiotic susceptibility	13
2.4	Virulence Determinants	16
2.5	Enterococcus spp. as Probiotic	19
	2.5.1 <i>Enterococcus faecium</i> as a probiotic in humans	20
2.5.2	Enterococcus faecium in administration for treatment	21
	for antibiotic-associated diarrhea (AAD)	
2.6	Isolation and Identification of Enterococcus spp.	22
	2.6.1 Most-Probable-Number (MPN) method	22
	2.6.2 Biochemical test	24
CHAI	PTER 3: METHODOLOGY	
3.1	Materials	26
	3.1.1 Raw materials	26
	3.1.2 Chemicals	26
	3.1.3 Apparatus	27
3.2	Methods	27
	3.2.1 Sample Collection	27
	3.2.2 Sample Preparation	28
	3.2.3 Culturing Method	29
	3.2.4 Biochemical Test	30
	3.2.4.1 Glucose, Lactose, Sucrose and Maltose Test	30
	3.2.4.2 Catalase Test	31
	3.2.4.3 Growth at 10° C and 45° C	31
	3.2.4.4 Growth at 6.5% NaCl	31

3.2.4.5 Gram Stain	32
3.2.5 Disc-Diffusion Method	33
CHAPTER 4: RESULTS AND DISCUSSION	
4.1 Isolation of <i>Enterococcus</i> spp.	34
4.2 Biochemical Test	36
4.3 Antibiotic Resistance	41
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	48
CITED REFERENCES	52
APPENDICES	61
CURRICULUM VITAE	71

ABSTRACT

IDENTIFICATION AND ANTIBIOTIC SUSCEPTIBILITY OF Enterococcus spp. FROM RAW COW MILK AND RAW GOAT MILK

Concerning to biohazard level caused by enterococcal infections, a study has been done to detect the prevalence of the Enterococcus spp. in raw milk from cow and goat since this species was known to be as a food-borne pathogen that primarily predominant in dairy products. Prior to detection of Enterococcus spp. the assumption on viable population count for presumptive Enterococcus spp. have been tabulated by which the raw cow milk isolates showing a high number compared to isolates from raw goat milk due to slightly different temperature storage. The identification to genera level has been carried out through 10 biochemical tests. For carbohydrate test, comprises of lactose, sucrose, glucose and maltose have shown positive result by which all the 25 isolates from both raw cow and goat milk were fermented. Further tests are also showing a comparable result to previous study, such as catalase test, potassium hydroxide test, Gram stain, growth at 10°C, 40°C and 6.5% NaCl. Enterococcus spp. is highly resistant, resulted in 100% resistant to 11 antimicrobial agents. This is due to consequence from the dissemination of multiple antibiotic-resistant enterococci or may be caused by their transferable genes. Besides, the extensive and provident use of antibiotics in animal husbandry and veterinary medicine could also affect the antibiotic resistant among the *Enterococcus* spp.