THERMAL NEUTRON FLUX MEASUREMENT AT PNEUMATIC TRANSFER SYSTEM (PTS) OF REACTOR TRIGA PUSPATI (RTP) USING NEUTRON ACTIVATION ANALYSIS (NAA)

NUR ZARIFAH BINTI ZAHALI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

ABSTRACT

THERMAL NEUTRON FLUX MEASUREMENT AT PNEUMATIC TRANSFER SYSTEM (PTS) OF REACTOR TRIGA PUSPATI (RTP) USING NEUTRON ACTIVATION ANALYSIS (NAA)

PUSPATI TRIGA Reactor is the only research reactor in Malaysia started its operation in 1982. It has conducted many research and analysis in nuclear and medical science. One of them is neutron flux measurement analysis by using Neutron Activation Analysis (NAA). The sample used is Au-197. The samples are prepared in the form of bare Aurum (Au) and Aurum covered with Cadmium (Cd). Irradiation of samples takes place at Pneumatic Transfer System (PTS) of PUSPATI TRIGA Reactor. After irradiation process, the counting of sample which is the decay is measured by using high-purity germanium (HPGe) gamma detector. The efficiency of detector will determine the precision of the neutron flux. When the distance of detector is increased the Aurum efficiency is decreased exponentially. Neutron Activation Analysis is the method used in nuclear field to determine the concentration of element in a wide amount of materials. The neutrons will bombard the elements or samples caused activity of radioactive samples can be determined. The formula of neutron flux is used to determine the thermal flux conducted in PTS. The experimental result give out the thermal neutron flux at PTS is 5.75 x 10^{11} ncm⁻² s⁻¹. It is quite accurate to calculated result which is at 6.0 x 10^{11} n cm⁻² s⁻¹.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
ABSTRACT	ix
ABSTRAK	x

CHAPTER 1 INTRODUCTION

1.1	Background and problem statement	1
1.2	Significance of study	3
1.3	Objective of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Energy range	5
2.2	Sample	5
2.3	Neutron flux	6
2.4	Neutron Activation Analysis	6
2.5	Equipment	8
2.6	Previous research	9

CHAPTER 3 METHODOLOGY

3.1	Material and equipment		11
	3.1.1	Materials	11
	3.1.2	Equipment	11

3.2	Metho	ds	11
	3.2.1	Calibration of detector	11
	3.2.2	Preparation of samples	12
	3.2.3	Irradiation of samples	14
	3.2.4	Counting of samples	15
	3.2.5	Sample analysis	16

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Calibr	ation of detector	20
4.2	Prepar	Preparation of samples	
	4.2.1	Mass of samples	22
4.3	Irradiation of samples		23
4.4	Counting		24

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 28

CITED REFERENCES	30
APPENDICES	33
CURRICULUM VITAE	36

LIST OF TABLES

Table Caption

-

4.1	Data for standard source solution	21
4.2	Energy and efficiency of chosen source at 10 cm	22
4.3	Mass of bare Au	22
4.4	Mass of Au for Au + Cd	23
4.5	Mass of Cd for Au + Cd	23
4.6	Amount of radioactivity emitted by each sample after irradiation	24
4.7	Thermal flux value for first counting	25
4.8	Thermal flux value for second counting	25
4.9	Thermal flux value for third counting	26
4.10	Average thermal flux for three times of counting	26