DEFECT DETECTION IN WELD ZONE USING ULTRASONIC NON-DESTRUCTIVE TESTING

MUHAMMAD AIMAN BIN ISMAIL

.

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

ABSTRACT

DEFECT DETECTION IN WELD ZONE USING ULTRASONIC NON-DESTRUCTIVE TESTING

The defects in the materials can be tested by using Non-destructive testing (NDT). NDT is defined as a testing of material, component or assembly by means, which do not affect its ultimate use. One of common methods in NDT is Ultrasonic testing (UT). UT is a non-destructive technique of describing the depth or interior structure of a test piece with high-frequency sound waves. UT can be utilized for flaw discovery, dimensional estimations and material display. Therefore, by using UT, the defect of the plate can be determined. The defect of Plate No. 14 B was located on the middle of the plate with the depth of half of the thickness, which was 5.1 mm. For plate No. 6, the defect was detected from the position 2 by the depth of 5.5 mm as half of the thickness. Thus, the defect was located on the middle of the welded plate. For plate No. 13, the defect was determined from the position 2 by the depth of 7.0 mm as half of the thickness. That is why, the defect was detected at the centre of the welded plate. While, for plate No. 1, the probe was moved to position 2 and the defect was obtained at the depth of 1.4 mm and sound path, S of 26.2 mm. Lastly for plate No. 2, the probe was moved to position 2 and the defect was obtained at the depth of 5.0 mm and sound path, S of 30.0 mm. In conclusion, the defect present in weld zone on the plate is successfully determined using ultrasonic testing by analyzing graph signal of ultrasonic testing.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES	
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTSRAK	x
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problem statement	3
1.3 Significant of study	4
1.4 Research objectives	5
1.5 Literature Review	6
CHAPTER 2 THEORY	
2.1 Sound Wave	10
2.2 Frequency	10
2.3 Velocity	11
2.4 Wavelength	11
2.5 Mode of Propagation	12
2.6 Variables Limiting Transmission of Sound Waves	13
2.7 Reflection at a Boundary	13
2.8 Angle of Reflection and Refraction	14
2.9 Ultrasonic Transducers	· 16
2.9.1 Contact Transducers	17
2.9.2 Angle Beam Transducers	17
293 Delay Line Transducers	17

2.9.3	Delay Line Transducers		17
2.9.4	Immersion Transducers		18
2.9.5	Dual Element Transducers		18
2.10 Appli	ication	•	18
2.10.1	Pitch-catch mode for pre-scan positioning and		
	gating calculation		20
2.10.2	Pulse-echo mode and scanning.		21

2.10.2 Pulse-echo mode and scanning.

CHAPTER 3 METHODOLOGY

•

3.1	1 Ultrasonic Testing Equipments		23
3.2	.2 Calibration Methods		23
	3.2.1	Calibration with Normal Probe (T-R Probe)	24
	3.2.2	Calibration with Angle Probe (45°, 60°)	24
3.3	3.3 Procedure		25
3.4	Sample testing		26
	3.4.1	Plate testing by T-R Probe (normal probe)	26
	3.4.2	Type of detect location	26
	3.4.3	Plate testing by Angle Probe	27
	3.4.4	Type of defect location	27

CHAPTER 4 RESULTS AND DISCUSSION

.

4.1	Calibration by using T-R Probe	28
4.2	Penetration of plate by using T-R Probe	29
4.3	Calibration by using Angle Probe	34
4.4	Penetration of plate by using angle probe $(45^{\circ} \text{ and } 60^{\circ})$	36

СН	APTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1	Conclusion	43
5.2	Recommendation	44

CITED REFERENCES		46
APPENDIX A		48
APPENDIX B	10	49
APPENDIX C		50

LIST OF TABLES

Table	Caption	Page
4.1	Calibration for (T-R Probe)	28
4.2	Penetration of Plate No. 14 B (Center Line)	29
4.3	Penetration of Plate No. 16 (Porosity-Weld Body)	30
4.4	Penetration of Plate No. 13 (Slag Inclusion)	32
4.5	Calibration for Angle Probe	35
4.6	Penetration of Plate No. 1 (Toe Crack) with angle 45 ⁰	36
4.7	Penetration of Plate No. 2 (Root Crack) with angle 60 ⁰	40