SIZING ACCURACY OF LACK OF SIDE WALL FUSION ON SINGLE V-BUTT JOINT WELDS USING ULTRASONIC BACK TIP DIFFRACTION TECHNIQUE

NURHAYATI NADHIRAH BINTI MUHAMAD

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

ABSTRACT

SIZING ACCURACY OF LACK OF SIDE WALL FUSION ON SINGLE V-BUTT JOINT WELDS USING ULTRASONIC BACK TIP DIFFRACTION TECHNIQUE

This purpose of study is to compare the performance of conventional Ultrasonic Testing (UT) with Back Tip Diffraction technique on Phased Array Ultrasonic Testing (PAUT) in determining the size of Lack of Sidewall Fusion (LOSWF) defect on single V-butt joint welds. The instrument used for both methods is OmniScan MX2, equipped with 5L64 probe and rexolite angle wedge. The frequency and beam angle is set at 5MHz and 45°, 60° and 70°. Three welded carbon steel for this study are PL 14971, PL 14962 and PL 14960, each has designated LOSWF defect varied in height and length. The sizing technique applied is 6dB drop technique. The dimension obtained then compared with a reference data and the relative difference between the two acquired. For PL 14971, the relative error for conventional UT and PAUT with Back Tip Diffraction inspection in obtaining LOSWF length is 0% and 6.67% while 373% and 20.4% for its height. For PL 14962 and PL 14960, the length relative difference for is 7.14% and 10.7% using conventional UT and 10.7% and 32.1% using PAUT. Their height relative difference using conventional method is 21.4% and 80.6%. The diffracted signal from PL 14962 and PL 14960 were too faint to acquire their height. Therefore, this study proved that conventional UT method is suitable to obtain LOSWF length and height for specimen that has any thickness. PAUT with Back Tip Diffraction technique, however, is not suitable to determine defect height for specimen that is 8mm or thinner than that.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLE	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	5
1.3	Objectives of Study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	
	2.1.1 Conventional Ultrasonic Testing	9
	2.1.2 Phased Array Ultrasonic Testing (PAUT)	10
	2.1.2.1 Back Tip Diffraction Technique	11
2.2	Material for Inspection	12
	2.2.1 Lack of Sidewall Fusion (LOSWF)	13
2.3	Advantages and Limitations of UT	13

CHAPTER 3 METHODOLOGY

3.1	Samp	le/Apparatus/Instruments and Experimental Set Up	15
	3.1.1	Welded Metal Plate	16
	3.1.2	OmniScan MX2	22
3.2	Conve	entional UT Inspection	25
	3.2.1	Calibration of Apparatus for Conventional UT	26
	3.2.2	LOSWF Detection using Conventional UT	28
	3.2.3	LOSWF Sizing using Conventional UT	29
3.3	PAUT	Inspection	31
	3.3.1	Calibration of Apparatus for PAUT	32
	3.3.2	LOSWF Detection using PAUT	33
		3.3.2.1 LOSWF Detection using PAUT and	34
		Back Tip Diffraction Technique	
	3.3.3	LOSWF Sizing using PAUT	35
3.4	Expec	ted Result	36
	3.4.1	Conventional UT	36
	3.4.2	PAUT	37

CHAPTER 4 RESULTS AND DISCUSSION

- - - ---

.

4.1	Inspection Data		38
	4.1.1	Conventional UT Inspection Data	38
	4.1.2	PAUT with Back Tip Inspection Data	39
4.2	.2 Data Analysis		45
	4.2.1	False Analysis	45
	4.2.2	Identification and Sizing of LOSWF	47
	4.2.3	Variation in Sizing of LOSWF	48
CHA	PTER 5	5 CONCLUSION AND RECOMMENDATIONS	50

CITED REFERENCES CURRICULUM VITAE

52

54

v

LIST OF TABLES

Table	Caption	Page
3.1	Specification details of metal plate PL 14971	17
3.2	Specification details of metal plate PL 14962	19
3.3	Specification details of metal plate PL 14960	20
3.4	Parameters for conventional UT	26
4.1	Length and height of LOSWF obtained using	39
	conventional UT method	
4.2	Color range according to reflected wave amplitude	40
4.3	Length and height of LOSWF obtained using back tip	44
	diffraction technique on PAUT method	