THE DIELECTRIC CONSTANT ($\varepsilon_r = \varepsilon'_r - j\varepsilon''_r$) AND LOSS TANGENT (tan $\delta = \varepsilon''/\varepsilon'$) OF DIFFERENT THICKNESSES OF 70% THERMOPLASTIC NATURAL RUBBER - 30% MAGNETITE (Fe₃O₄) COMPOSITE

WAN NURFATIN KAMILIA BINTI WAN MOHD RUSDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

ABSTRACT

THE DIELECTRIC CONSTANT ($\varepsilon_r = \varepsilon'_r - j\varepsilon''_r$) AND LOSS TANGENT (tan $\delta = \varepsilon''/\varepsilon'$) OF DIFFERENT THICKNESSES OF 70% THERMOPLASTIC NATURAL RUBBER - 30% MAGNETITE (Fe₃O₄) COMPOSITE

A thermoplastic natural rubber (TPNR) was prepared by melt-blending of polypropylene (PP) and natural rubber (NR) in percentage weight ratio of 70:30 using an internal mixer. Samples of TPNR filled with same proportion of magnetite powders were similarly prepared at a fixed TPNR (70% of the total weight). The pure TPNR and different thickness of TPNR filled magnetite was prepared by using hot press process. The dielectric constant and tangent loss of sample with different thicknesses were studied. The thermogravimetric analysis (TGA) was used to check the homogeneity of the filler dispersion in the matrix of TPNR and vector network analysis used to study the dielectric constant and loss tangent. In thermogravimetric analysis, the sample was confirmed homogenous according to TGA results. The dielectric constant, E' and loss tangent, E"/E' were studied by using vector analysis in frequency range 8GHz-12GHz. The values of \mathcal{E} ' and $\mathcal{E}''/\mathcal{E}$ ' of the composites are almost comparable to each other in the measured frequency region. For dielectric constant, the 2mm thickness TPNR filled with magnetite has the highest reading which is 2.077019064 followed by the TPNR filled magnetite 5mm is 1.498707921 and the pure TPNR is 1.371611802 in the frequency range 8GHz-12GHz. For loss tangent, TPNR filled magnetite 2mm thickness has the lowest reading which is -0.033864351 followed by the TPNR filled magnetite 5mm is -0.020930693 and the pure TPNR is -0.017549753 in the frequency range 8GHz-12GHz. The incorporation of pure TPNR and the different thickness of TPNR filled magnetite has resulted differences in dielectric constant, loss tangent and microwave properties of the composites. These composites can be developed as an electromagnetic wave absorber.

TABLE OF CONTENTS

ACKNOLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Significance of study	3
1.3	Objectives of study	6

CHAPTER 2 LITERATURE REVIEW

2.1	Thermoplastic material		7
	2.1.1	Polypropylene (PP)	8
	2.1.2	Natural rubber	9
2.2	Thermoplastic natural rubber (TPNR)		10
	2.2.1	Magnetite (Fe ₃ O ₄)	11
2.3	Properties of magnet		13
2.4	Dielectric loss		14
2.5	Loss tangent		14
26	Waveon	uide	17

CHAPTER 3 METHODOLOGY

3.1	Introdu	ction	20
3.2	Materia	ls	20
3.3	Preparation of sample		20
	3.3.1	Preparation of thermoplastic natural rubber (TPNR)	21
	3.3.2	Preparation of thermoplastic natural rubber (TPNR) magnetite as filler composite	22
	3.3.3	Preparation sample sheet using hot press machine	23
3.4	Charact	rerization	25
	3.4.1	Thermogravimetric analysis	25
	3.4.2	Measurement of the dielectric constant and loss	26

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Thermogravimetric analysis	32
4.2	Dielectric constant	35

LIST OF TABLES

. .

Table	Caption	Page
4.1	Dielectric constant for TPNR	36
4.2	Dielectric constant for 2mm TPNR filled magnetite	36
4.3	Dielectric constant for 5mm TPNR filled magnetite	36
4.4	Loss tangent for TPNR	39
4.5	Loss tangent for 2mm TPNR filled magnetite	39
4.6	Loss tangent for 5mm TPNR filled magnetite	39

LIST OF FIGURES

и Э

Figure	Caption	Page
2.1	Structure of propylene	8
2.2	Isomer structure of natural rubber	10
2.3	Magnetite spin arrangement	13
3.1	Flowchart of thermoplastic natural rubber (TPNR)	21
3.2	Flowchart of preparation TPNR composite and magnetite as filler	22
3.3	Flowchart preparation of sample using hot press	23
3.4	The sketches frame for the mould sample	24
3.5	The sketches for the sample being pressed	24
3.6	Thermo Haake Internal mixer machine	25
3.7	Vector Network Analyzer (VNA)	27
3.8	Top view of the jig	27
3.9	The sketches top view of the jig	28
3.10	Sample sandwiched by the jig	28
3.11	The sketches of sample sandwiched by jig	29
3.12	Front view of jig with probe	29
3.13	The sketches front view jig with probe	30
3.14	Measurement of 4 different spots area	31
4.1	Delta Y pure TPNR	32
4.2	Derivatives of pure TPNR	33
4.3	Delta Y of TPNR filled magnetite	33