CORROSION INHIBITION OF CARBON STEEL USING SCHIFF BASE LIGANDS IN 1.0 M HYDROCHLORIC SOLUTION

MOHD EMIR HAFIDZ BIN HAFIDZUDDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA This Final Year Project Report entitled "Corrosion Inhibition of Carbon Steel Using Schiff Base Ligands in 1.0 M Hydrochloric Solution" was submitted by Mohd Emir Hafidz Bin Hafidzuddin, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

Miss Shadatul Hanom binti Rashid Supervisor

B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Miss Sabrina M. Yahaya Project Coordinator

B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam

Selangor

Dr. Siti Halimah Sarijo Head of Programme B. Sc. (Hons.) Applied

B. Sc. (Hons.) AppliedChemistry Faculty of Applied Sciences Universiti TeknologiMARA 40450 Shah Alam Selangor

Date: 25/5/30/0

ACKNOWLEDGEMENT

Alhamdulillah and praised to be Allah the Al-Mighty for His blessings in giving me a good health, strength, courage and the trait of patience to accomplish this study.

Upon completion of this project, I would like to express my gratitude to many parties, especially to my parents as they are the root for my success. Next, my heartfelt gratitude goes to my supervisor for this project, Miss Shadatul Hanom Rashid for her undivided attention, patience, guidance and wisdom. Furthermore, I would like to thank the Faculty of Applied Science's staffs for their supports, assistances and advices while completing this project.

Lastly, I would like to express my gratefulness towards my classmates for their helps and ideas directly or indirectly.

Thank you

Mohd Emir Hafidz Bin Hafidzuddin

TABLE OF CONTENTS

			Page
ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK			iii iv vi vii viii x
CHA	APTER	1 INTRODUCTION	1
1.1		round and Problem Statement	1
1.2	_	icance of study	3
1.3	-	rives of study	5
CHA	APTER :	2 LITERATURE REVIEW	6
2.1	Experi	mental	6
	2.1.1	Synthesize Schiff base	6
2.2	Charac	cterization of Schiff base	7
	2.2.1	Elemental Analysis	7
	2.2.2	Fourier Transformed Infrared (FTIR) Spectroscopy	9
	2.2.2	Nuclear Magnetic Resonance (NMR) Spectroscopy	11
2.3	Weigh	t Loss Measurement	13
CHA	APTER :	3 METHODOLOGY	17
3.1	Materi	als	17
3.2	Materi	al preparation	17
3.3	Preparation of Schiff base ligands		18
	3.3.1	Preparation of 4, 4'-(1E,1'Z)-(hexane-1,6-	18
		diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol (SB1)	
	3.3.2	Preparation of 2-(4-hydroxybenzylideneamino)-2- (hydroxymethyl) butane-1,4-diol (SB2)	18
3.4	Characterization		19
	3.4.1	Fourier Transformed Infrared (FTIR) Spectroscopy	19
	3.4.2	Nuclear Magnetic Resonance (NMR) Spectroscopy	19
3.5	Corrosion Inhibition Measurement		20
			20
	3.5.2	Weight loss measurements	20

ABSTRACT

STUDY OF CORROSION INHIBITOR USING SCHIFF BASE LIGANDS ON CARBON STEEL IN 1.0 M HYDROCHLORIC SOLUTION

Two Schiff base compounds namely 4,4'-(1E,1'Z)-(hexane-1,6-diylbis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)diphenol as SB1 and 2-(4-hydroxybenzylidene amino)-2-(hydroxymethyl)butane-1,4-diol as SB2 were derived from appropriate amine and aldehydes have been synthesized in ratio of 1:2 in ethanolic solution. The structures of the Schiff bases are investigated using ¹H NMR spectroscopy and FTIR spectroscopy. Results obtained from all characterization methods are closely matched with the theoretical values. It can be suggested that the required products of SB1 and SB2 have been successfully synthesized. Inhibition effect of two Schiff bases SB1 and SB2 as corrosion inhibitors on carbon steel in 1.0 M HCl solution has been studied using weight loss method. The result of investigation showed that all two compound act as good corrosion inhibitor. Inhibition efficiency increased with increasing concentration of inhibitors with SB2 exhibited the highest inhibition efficiency at 51.61% in concentration 3×10^{-5} M. Substituent of methyl and hydroxyl group on the benzene ring increases the inhibition efficiency. The decreasing efficiency of Schiff bases in the study could be noted as SB2 > SB1 accordingly at higher concentration.