WASTE COOKING OIL TRANSESTERIFICATION IN BIODIESEL PRODUCTION UTILIZING Ca/Al₂O₃ HETEROGENEOUS CATALYST

FATIN NUR SYAHIRAH BINTI MARODZI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2016

ABSTRACT

WASTE COOKING OIL TRANSESTERIFICATION IN BIODIESEL PRODUCTION UTILIZING Ca/Al₂O₃ HETEROGENEOUS CATALYST

The increasing demand for fossil fuel (petroleum and diesel) in the market brings a great concern to the global economy as it is natural and non-renewable sources. Several studies on alternative diesel (biodiesel) has been performed in which the non-renewable sources was substituted with renewable sources such as waste cooking oil. It was an initiative to reduce the usage of the natural sources. The process of transforming waste cooking oil into biodiesel is called transesterification. The process has been carried out in the round bottom flask fitted with reflux condenser. Generally, waste cooking oil consists of FFA and biodiesel consist of FAME. This study involved two transesterification methods which were one step reaction (transesterification) and two-step reaction (esterification-transesterification) and the CaO/Al_2O_3 as heterogeneous catalysts. The concern parameters studied were reaction time and catalyst loading. The results showed, the combination of esterification and transesterification gave high biodiesel yield (30.91%) compared to one step reaction (28.49%) with optimum reaction condition of 3 wt.% of CaO/Al₂O₃ catalyst, 12:1 methanol to oil ratio at temperature of 65°C for 3 hours. The biodiesel obtained was analyzed using FTIR and GC-MS to prove the FFA content in the waste cooking oil sample had been converted to FAME. The catalyst proved could be used in the biodiesel production. FTIR results of catalyst analysis proved that all the impurities were eliminated after calcined at 1000°C.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INRODUCTION

1.1	Background of study	1
1.2	Problem statement	4
1.3	Significance of study	5
1.4	The objective of study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction			
2.2	Waste	cooking oil	6	
	2.2.1	Characteristic of oil	7	
2.3	Transe	Transesterification		
	2.3.1	Mechanical stirring	10	
	2.3.2	Ultrasonic irradiation method	11	
	2.3.3	Supercritical alcohol method	12	
	2.3.4	Mechanism reaction	14	
2.4	Two-st	15		
	2.4.1	Esterification-transesterification reaction	15	
	2.4.2	Mechanism reaction	16	
2.5	Cataly	st	17	
	2.5.1	Homogeneous catalyst	18	
	2.5.2	Heterogeneous catalyst	20	
	2.5.3	Catalyst characterization	22	
2.6	Material support			
2.6	Biodiesel analysis			

CHAPTER 3 METHODOLOGY

3.1	Introduction	25
3.2	Apparatus	25
3.3	Reagent and chemicals	25

3.4	Instrum	iment		26
3.5	Experimental work			26
	3.5.1	Sample of	collection	26
	3.5.2	Sample p	pre-treatment	26
	3.5.3	Catalyst	preparation	27
	3.5.4	One step	transesterification reaction	28
	3.5.5	Two-step	reaction (esterification-transesterification)	29
	3.5.6	Acid val	ue determination	30
		3.5.6.1	Preparation of 0.1 M Potassium Hydrogen	30
			Phthalate (KHP)	
		3.5.6.2	Preparation of 0.1 M Ethanolic-Potassium	30
			Hydroxide (Et-KOH)	
		3.5.6.3	Standardization of Et-KOH with KHP	31
		3.5.6.4	Acid value titration	32
	3.5.7	Blank sample		32
3.6	Biodiesel analysis			33
	3.6.1	Fourier 7	Fransform Infrared Spectroscopy (FTIR)	33
	3.6.2	Gas Chro	omatography-Mass Spectroscopy (GC-MS)	33
3.7	Catalys	t character	ization	34
	3.7.1	Thermog	gravimetric Analyzer (TGA)	34
	3.7.2	Fourier 7	Fransform Infrared Spectroscopy (FTIR)	35

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction			
4.2	One st	One step transesterification reaction		
	4.2.1	Effect of catalyst concentration	37	
	4.2.2	Optimization of reaction conditions	38	
4.3	Two st	ep reaction	40	
4.4	Acid v	42		
4.5	Biodie	43		
	4.5.1	Confirmation of ester group using FTIR	43	
	4.5.2	Confirmation of FAME using GCMS	45	
4.6	Catalyst characterization		48	
	4.6.1	Thermogravimetric Analysis (TGA)	48	
	4.6.2	FTIR	50	
4.7	Reusal	pility of catalyst	51	

CHAPTER 5 CONCLUSION AND RECOMMENDATION 5.1 Conclusion

3.1	Conclusion	55
5.2	Recommendation	54

52

LIST OF FIGURES

Figure	Caption	Page
1.1	Transesterification reaction	3
2.1	Base-catalyst transesterification mechanism	14
2.2	General acid-catalyst reaction	16
2.3	Acid catalyst transesterification mechanism	17
3.1	Experimental set up for standardization of Et-KOH	31
4.1	The effect of catalyst concentration on the FAME yield (3	37
	wt.%, 12:1 MeOH:oil, 65°C and 3 h)	
4.2	The effect of catalyst loading in relation with reaction time	38
	(12:1 MeOH:oil and 65°C)	
4.3	The effect of reaction time (3 wt.%, 12:1 MeOH:oil and 65°C)	40
4.4	FAME yield over various esterification time (0.5,1, 2 and 3 h)	41
4.5	Effect of reaction time on transesterification of esterified oil	42
4.6	FTIR spectra of (A) WCO, (B) Esterified oil and (C) FAME	44
4.7	GC-MS chromatogram of FAME yield	46
4.8	Thermogram of CaO/Al ₂ O ₃ catalyst after aging in an oven for	49
	24 hours at 90°C	
4.9	FTIR spectrum of catalyst (a) Fresh and (b) Spent	51
4.10	The reusability of CaOAl ₂ O ₃	52