INHIBITIVE EFFECT OF BLACK PEPPER EXTRACT ON THE SULPHURIC ACID CORROSION OF MILD STEEL

NABILAH BT NOOH

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCE UNIVERSITI TEKNOLOGI MARA SHAH ALAM

APRIL 2009

This Final Year Project Report entitled **"Inhibitive effect of black pepper extract** on the H2SO4 corrrosion of mild steel" was submitted by, Nabilah Binti Nooh in partial fullfillment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Science, and was approved by

Miss Sabrina Br M. Yahaya

Supervisor Faculty of Applied Science Universiti Teknologi Mara

Miss Sabrina Bt M.Yahaya Project Coordinator B.Sc (Hons) Applied Chemistry Faculty of Applied Science Universiti Teknologi Mara

Dr. Yusairie Head of Programme B.Sc. (Hons) Applied Chemistry Faculty of Applied Science University Teknologi Mara

Date: 28 MAY 2009

TABLE OF CONTENT

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

Research Background	1
Problem statement	5
Significance of study	6
Research objectives	6
Scope of Study	6
Expected Results	7
	Problem statement Significance of study Research objectives Scope of Study

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction to Corrosion	8
2.2	Metallurgy	9
2.3	Corrosion Inhibitors	11
2.4	Organic Inhibitor	12
2.5	Non- toxic Inorganic inhibitor	13
2.6	Green Inhibitors	15
2.7	Black Pepper Extract as Corrosion Inhibitor	16
2.8	Measurements Inhibitor	17
	2.8.1 Scanning Electron Microscope	17
	2.8.2 FTIR (Fourier Transform Infrared) Spectroscopy	19
	2.8.3 Polarization study	20
2.9	Summary	21

CHAPTER 3 METHODOLOGY

3.1	Materials	
3.2	Experimental Procedures	22
	3.2.1 Specimen Preparation	22
	3.2.2 Inhibitor preparation	23
	3.2.3 Preparation of electrolyte solution	23

3.3 Analytical Procedures		tical Procedures	
	3.3.1	Characterization of black pepper extract	23
	3.3.2	Tafel polarization method	24
	3.3.3	Scanning electron microscope (SEM) test	24

CHAPTER 4 RESULT AND DISCUSSION

4.1	Electrochemical measurements	25
	4.1.1 Effect of inhibitor (black pepper extract) concentration	25
	4.1.2 Effect on inhibition efficiency to the concentration	30
	4.1.3 Effect on corrosion rate to the concentration	31
4.2	Study of functional group	32
4.3	Study the morphology of specimen	38

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1 5.2	Conclusion Recommendation	46 47
CITED	REFERENCES	48
APPEN	NDICES	50

CURRICULUM VITAE 56

ABSTRACT

THE INHIBITORY EFFECT OF BLACK PEPPER EXTRACT ON THE SULFURIC ACID CORROSION OF MILD STEEL

The corrosion inhibitive effect of the extract of black pepper (Piper nigrum plant) on mild steel (MS) in 1MH2SO4 media was evaluated by electrochemical studies (Tafel polarization), Fourier transform infrared (FTIR) and scanning electron microscope (SEM) studies.Generally, corrosion rate information was determined using the polarization method. The results showed that different concentration of black pepper extract (200ppm, 400ppm, 600ppm, 800ppm and 1000ppm) gave a different percentage of inhibition efficiency. Higher concentration of black pepper extact, 1000ppm inhibit more than others. Meanwhile, for the characterization, the FTIR managed to show that the corrosion inhibition was primarily due to the presence of conjugated double bond with polar group in black pepper extract. The effectiveness was based on the chelating action on the electrode surface, preventing metal reaction and dissolution. Corrosion inhibition potential can be attributed to adsorption which was revealed by SEM studies. Qualitatively, the metal immersed in solution without inhibitor was highly damaged compared to solution contained inhibitor. Therefore, SEM studies provide confirmatory evidence for the protection of MS by the black pepper extract.