THE EFFECT OF ALUMINA AS FILLER IN WASTE COOKING OIL-BASED POLYURETHANE SOLID POLYMER ELECTROLYTE

ROSNASUHA BINTI MOHD NASIR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2016

ABSTRACT

THE EFFECT OF ALUMINA AS FILLER IN WASTE COOKING OIL-BASED POLYURETHANE SOLID POLYMER ELECTROLYTE

In the present study, polyurethane (PU) had been prepared by using a different content of Aluminium Oxide (Al₂O₃) filler, in order to examine the filler addition effect on the (SPE). The SPE has low ionic conductivity, so to enhance the conductivity, the filler was added. The solid polymer electrolyte is synthesized by solution casting technique. The SPE uses polyurethane (PU) as a host then doped with lithium perchlorate (LiClO₄), ethylene carbonate (EC) as plasticizer, and aluminium oxide (Al₂O₃) as filler. All solution use acetone as solvent. To determine the ionic conductivity of SPE, the Electrochemical Impedance Spectroscopy (EIS) was used. The highest conductivity is observed for the composition PU-LiClO₄-EC-30% Al₂O₃ with a value of 2.379×10^{-7} S/cm at room temperature. This is show that adding of filler can improved the ionic conductivity because the formation of adhance sites and conduction pathways are improve the for ionic transport by Lewis acid/base type interactions between the filler surface groups and the ionic species. Then to determine the functional group of the compound that contain in the SPE, its was characterized by using FTIR instrument. Thermal analysis (TGA) proved the occurence of chemical interaction of segmented PU solid polymer electrolyte. The conductivity is improve by mix of plasticizer (EC) to decrease the crystallinity and increasing the amorphous phase content of the SPE. The filler such as Al₂O₃ is used to improve the conductivity by encouraging the structure in the SPE. These properties exhibited promising potential for enhancement of SPE that giving focus on polyurethane (PU).

TABLE OF CONTENTS

rade	P	a	a	e
------	---	---	---	---

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problems statement	3
1.3	Significance of Study	4
1.4	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Solid Polymer Electrolyte	6
2.2	Fillers	8
2.3	Polyurethane	12
2.4	Waste cooking oil-based on polyurethane solid polymer electrolyte	13

CHAPTER 3 METHODOLOGY

3.1	Chem	icals	18
3.2	Resear	rches Methodology	19
3.3	Waste	cooking oil collection and pre-treatment	20
3.4	Synthe	esis the waste cooking oil-based polyol	20
3.5	Synthe by ad	esis of polyurethane-based solid polymer electrolyte ding filler	22
3.6	Chara	cterization of waste cooking oil	22
	3.6.1	Fourier Transform Infrared (FTIR) analysis	22
	3.6.2	Thermogravimetric Analysis (TGA)	23
	3.6.3	Electrochemical Impendance (EIS)	23

CHAPTER 4 RESULT AND DISCUSSION

4.1	Waste	cooking oil (WCO)	25
	4.1.1	Physical properties of waste cooking oil	25
	4.1.2	Fourier Transform Infrared (FTIR) of WCO	26
4.2	Waste	cooking oil-based polyol	28
	4.2.1	Physical properties waste cooking oil-based polyol	29
	4.2.2	FTIR analysis WCO-based polyol	30
4.3	WCO	based-polyurethane solid polymer electrolyte	31
	4.3.1	Physical properties of WCO based-PU SPE	31
	4.3.2	Fourier Transform Infrared (FTIR) analysis polyurethane	
		solid polymer electrolyte	33
	4.3.3	Electrochemical Impendance Spectroscopy (EIS)	36
	4.3.4	Thermal Gravimetric Analysis (TGA)	38
CHAI	PTER 5	DISCUSSION	
5.1	Conclu	usion	41
5.2	Recon	nmendation	41
CITE	D REF	ERENCES	43
APPE	NDICI	ES	48
CURK	RICULU	UM VITAE	53

LIGI OF TRULLO

Table	Caption	Page
2.1	The ionic conductivity using in the filler	10
2.2	Synthesis waste cooking oil-based on polyol	16
3.1	The lists of chemicals use	18
3.2	Characterization of waste cooking oil	20
3.3	Characterization of polyol	21
4.1	Physical properties of polyol	25
4.2	The wavenumber of waste cooking oil	26
4.3	Physical properties waste cooking oil-based polyol	28
4.4	The wavenumber of waste cooking oil and waste cooking oil-based polyol	29
4.5	Polyurethane solid polymer electrolyte with various Al ₂ O ₃	31
4.6	The wavenumber of polyurethane solid polymer electrolyte	34
4.7	The ionic conductivity at room temperature for polyurethane solid polymer electrolyte with and without filler	37
4.8	Decomposition temperature, T_d and percentage weight losses of polyurethane films	39

....