ANALYSIS OF TRACE METALS IN SELECTED TRADITIONAL HERBAL PLANTS USED FOR ANTI-DIABETIC TREATMENT

NURUHUZAIFA BINTI SHAFIE

Final Year Project Proposal Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2016

ABSTRACT

ANALYSIS OF TRACE METALS IN SELECTED TRADITIONAL HERBAL PLANTS USED FOR ANTI-DIABETIC TREATMENT

The aim of this study was designed to analyze of trace metals present in antidiabetic plant and concentration in selected traditional herbal plants and the concentration of metals between different plants. The selected leaves of herbal plants were pokok misai kucing (Orthosiphon stamineus), pokok bismillah (Vernonia amygdalina) and daun bidara (Ziziphus mauritiana). The selected trace metals studied were Fe (iron), Mn (manganese), Ni (nickel) and Zn (zinc). The samples were analyzed by using Flame Atomic Absorption Spectroscopy. The concentrations of trace metals in leaves part of herbal plants samples were varied ranged from 78.9 mg kg⁻¹ to 127.2 mg kg⁻¹ for iron, 26.8 mg kg⁻¹ to 86.1 mg kg⁻¹ for manganese, 14.9 mg kg⁻¹ to 16.2 mg kg⁻¹ for nickel and 25.8 mg kg⁻¹ to 149.3 mg kg⁻¹ for zinc. Concentrations of trace metals for iron, zinc and nickel for three herbal plants were higher than WHO permissible limit while manganese and zinc for species Ziziphus mauritiana were below WHO maximum limit. The results showed the analyzed traditional herbal plants can be considered as potential sources for providing a reasonable amount of required elements to the patients of diabetes mellitus. In addition, these results can be used to set new standards for prescribing the dosage of the herbal drugs prepared from these plants materials.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Significant of study	4
1.4	Scope of study	4
1.5	Objective of the study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Traditional medicine		6
2.2	Trace metals		8
	2.2.1	Zinc (Zn)	9
	2.2.2	Manganese (Mn)	9
	2.2.3	Iron (Fe)	10
	2.2.1	Nickel (Ni)	10
2.3	Trace metals in herbal plant		11
2.4	Concer	12	
2.5	Herbal plants leaf		13
	2.5.1	Orthosiphon stamineus	13
	2.5.2	Vernonia amygdalina	14
	2.5.3	Ziziphus mauritiana	15
2.6	Atomic absorption spectrometry		16

CHAPTER 3 METHODOLOGY

3.1	Materi	al	17
	3.1.1	Raw materials	17
	3.1.2	Chemicals and reagent	17
	3.1.3	Glassware and apparatus	18
	3.1.4	Equipment and analytical instrument	18
3.2	Sample collection		19
	3.2.1	Preparation of herbal plants samples	19
	3.2.2	Standard preparation	20
3.3	Determination of trace metals in herbal leaf sample		21
3.4	Flame	atomic absorption spectrometer (FAAS)	22

CHAPTER 4 RESULT AND DISCUSSION

4.1	Calibration curve		25
4.2	Heavy metals concentration in plants		26
	4.2.1	Zinc (Zn)	28
	4.2.2	Manganese (Mn)	30
	4.2.3	Nickel (Ni)	32
	4.2.4	Iron (Fe)	34
4.3	Heavy	metals content in study and privious study herbal plant	36

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 38

CITE REFERENCES	40
CURRICULUM VITAE	46

LIST OF TABLES

Table	Caption	Page
2.1	Some herbal plants that used as anti-diabetic medicine in Ivory Coast	11
2.2	The various plants herbal analyzed and concentration trace metals	12
3.1	Concentration of standard solution for each selected trace metal prepared and analyzed using FAAS	20
3.2	Weight of plant samples	21
3.3	Detection limit of trace metals analyzed using FAAS	22
4.1	Regression coefficient for each element analyze by FAAS	26
4.2	Concentration of element present in selected the antidiabetic medicine plants determined by FAAS (mg/kg)	26
4.3	Maxmimum allowable limits of trace metals in herbal plant (mg/kg) and dietary intake (mg/day)	27