CHEMICAL COMPOSITION OF VOLATILE COMPONENT FROM CITRUS SPECIES

NURUL HAKIMAH BINTI ISMAIL

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences University Teknologi MARA

JULY 2016

ABSTRACT

CHEMICAL COMPOSITION OF VOLATILE COMPONENT FROM CITRUS SPECIES

This study was carried out to determine the chemical composition of the volatile component from the kaffir lime (Citrus hystrix), calamondin (Citrus microcarpa), pomelo (Citrus maxima). These three sample leaves were extracted with hexane by using hydrodistillation method. All the volatile oils were identifying by using GC-MS and comparison by previous work. The major component for volatile oil from the leaf Citrus hystrix were Hexatoporphyrin (62.9%), oxime (82.3%), linalool (80.2%), terpine 4-ol (60.0%), and α - tripenol (55.6%). On the other hand, oxime (88.2%), (1s, 2R, 5R)-2-(-hydroxypropan-2-yl)-5-methyl chyclohexanol (20.4%) and p- methane-3, 8-diol, cis-1, 3, trans-1, 4 (69.4%) were found to be major chemical constituent in Citrus microcarpa. Finally, identification on the volatile oil of Citrus have afforded oxime (86.5%) (9), Terpinen-4-ol (64.8%), 2, 6- octadienal (56.6%), and (1R, 4Ar, 7r, 8aR)-7-(2- hydropropan-2-yl)-1 (80.5%), respectively.

TABLE OF CONTENTS

Page

iii

TABLE OF CONTENTS	iv
LIST OF TABELS	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix

CHAPTER 1 INTRODUCTION

ACKNOWLEDGEMENTS

1.1	Background of study	1
1.1.1	Citrus Hystrix	1
1.1.2	Citrus Microcarpa	2
1.1.3	Citrus maxima	3
1.2	Significance of study	6
1.3	Objectives of study	7

CHAPTER 2 LITERATURE REVIEW

2.1	The genus of Citrus	8
2.2	Essential oil	14
2.3	hydrodistillation	17

CHAPTER 3 METHODOLOGY

Ł

3.1	3.1.1 3.1.2 3.1.3	Material Raw materials Chemicals and reagent apparatus and glassware	20 20 20 20	
3.2	sample	collection	21	
3.3	Sample	e Preparation and Extraction	21	-

CHAPTER 4 RESULT AND DISCUSSION

x

4.1	Extraction	22
4.2	Citrus microcarpa	23
4.3	Citrus hystrix	26
4.4	Citrus maxima	30

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	
CITE REFERENCES	35
APPENDICES	38
CURRICULUM VITAE	39

LIST OF TABELS

Table	Caption	Page
2.0	species origin of Citrus species	8
2.1	The comparison (%) of <i>Citrus copticum</i> oils obtained by SFE and hydrodistillation	18
4.0	The operating GC-MS	23
4.1	The essential oil content (%) of leaves Citrus microcarpa and their main constituent	25
4.2	The essential oil content (%) of leaves Citrus hystrix and their main constituent	28
4.3	The essential oil content (%) of leaves Citrus maxima and their main conctituent	31

: