BIODIESEL PRODUCTION VIA TRANSESTERIFICATION OF WASTE PALM OIL USING Mg/Al₂O₃ AS HETEROGENEOUS CATALYST

NURUL HIDAYAH BINTI LUKMANUL HAKIM

BACHELOR OF SCIENCE (Hons.)
CHEMISTRY
FACULTY OF APPLIED SCIENCES
UNIVERSITI TEKNOLOGI MARA

JULY 2016

ABSTRACT

BIODIESEL PRODUCTION VIA TRANSESTERIFICATION OF WASTE PALM OIL USING Mg/Al₂O₃ AS HETEROGENEOUS CATALYST

Two main types of biofuels are bioethanol and biodiesel. Biodiesel also known as FAME is a renewable environmental friendly fuel and has caught the public interest. The Mg/Al₂O₃ catalyst used in this study was prepared by IWI method and was calcined at 1000°C. After that, the catalyst was characterized by using FTIR and TGA. The parameter studied were reaction time and catalyst loading. The highest percentages yield of biodiesel is 42.5% from one step transesterification reaction. The condition was 12:1 methanol to oil ratio, reaction temperature of 65°C, reaction time of 2 hours and 4 wt% catalyst loading. The esterification reaction was accomplished in the existing of H₂SO₄ as a common acid catalyst to reduce the amount of free fatty acid (FFA). After that, the acid value of the waste palm oil should be less than 1 mg KOH/g oil. The biodiesel obtained were analyze by using FTIR and GC-MC. The catalyst has low reusability because the used catalyst surface has been contaminated after the reaction. Thus, the catalyst is not suitable to be used for various cycles.

TABLE OF CONTENTS

			Page			
ACK	ACKNOWLEDGMENT					
TAB	LE OF	CONTENTS	iv			
LIST OF TABLES LIST OF FIGURES						
						LIST
ABSTRACT						
ABSTRAK						
CHA	PTER	1 INTRODUCTION	1			
1.1	Backg	round	1			
1.2	Proble	em statement	3			
1.3	Signif	icance of study	4			
1.4	Objectives of study					
CHA	APTER :	2 LITERATURE REVIEW	6			
2.1	Feedst	tock for Biodiesel	6			
2.2	Metho	8				
	2.2.1	Microemulsion method	8			
	2.2.2	Transesterification method	9			
	2.2.3	Thermal cracking (Pyrolysis) method	11			
	2.2.4	Direct use vegetable oil method	11			
	2.2.5					
1000		Methods	12			
2.3	Cataly		12			
	2.3.1	Homogeneous catalyst	13			
	2.3.2	Heterogeneous catalyst	13			
2.4	8.50	st characterization	15			
2.5	Result	ts from previous study of catalyst and oil	15			
CHA	APTER:	3 METHODOLOGY	17			
3.1	Feeds	17				
	3.1.1	3.1.1 Chemicals and materials				
	3.1.2	Apparatus	17			
	3.1.3	Instrument	18			
3.2	Prepar	ration of catalyst	18			

	3.2.1	Characterization of catalyst			
	3.2.2 Fourier Transform Infrared Spectroscopy(FTIR)				
	3.2.3	Thermogravimetry analyzer (TGA)			
3.3	Metho	ethod			
	3.3.1	Sample preparation			
	3.3.2	Blank sample			
	3.3.3	One step transesterification reaction from waste palm oil 3.3.3.1 Determination of reusability of catalyst for One step transesterification reaction			
	3.3.4	Two-step reaction (Esterification – Transesterification) 3.3.4.1 Determination of reusability of catalyst for two step reaction (Esterification – Transesterification)	2324		
	3.3.5	Acid value determination	25		
		3.3.5.1 Preparation of 0.1 M Potassium Hydrogen Phthalate (KHP) 3.3.5.2 Preparation of 0.1 M Ethanolic-Potassium	25		
		Hydroxide (Et-KOH)	25		
	in.	3.3.5.3 Standardization of Et-KOH with KHP	25		
		3.3.5.4 Acid value titration	26		
	3.3.6	Gas chromatography setup	26		
	3.3.7	Quantitative analysis of FAME			
			28		
СНА	CHAPTER 4 RESULTS				
4.1	Chara	acterization of catalyst	28		
	4.1.1	Fourier Transform Infrared Spectroscopy (FTIR)			
	4.1.2	Thermogravimetry analyzer (TGA)	29		
4.2	Biodiesel production 30				
	4.2.1	One step transesterification reaction from waste palm oil			
		4.2.1.1 Effect of reaction time	31		
		4.2.1.2 Effect of catalyst concentration	32		
		4.2.1.3 Effect of catalyst loading	33		
	4.2.2	Two-step reaction (Esterification - Transesterification)	34		
		4.2.2.1 Effect of esterification reaction time	35		
		4.2.2.2 Effect of transesterification reaction time	36		
4.3	Reusa	Reusability of catalyst			

	4.3.1		ty of catalyst for one step transesterification	27			
	4.3.2	reaction Reusabilit	ty of catalyst for two step transesterification	37			
		reaction	y or called the coop number of the control of the c	39			
4.4	Acid value determination						
4.5	Biodiesel analysis						
	4.5.1 Gas chromatography analysis						
	4.5.2	FTIR analysis		43			
		4.5.2.1	FTIR analysis for reusability of one step reaction	44			
		4.5.2.2	FTIR analysis of WPO and biodiesel sample	45			
CHAF	TER 5	CONCL	USION RECOMMENDATION	47			
5.1	Concl	lusion		47			
5.2	2 Recommendation						
			_	49			
	CITED REFERENCES APPENDICES						
CIIRR	ICIII I	IM VITAR		61			