MEASUREMENT THE LEVEL OF PHYSICOCHEMICAL PARAMETER AND HEAVY METALS CONTENTS IN THE AGRICULTURAL SURFACE WATER

SITI ZULAIKHA BINTI ZULKIFLI

Final Year Project Report Submitted in

Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science (Hons.) Chemistry

in the Faculty of Applied Science

Universiti Teknologi MARA

ABSTRACT

MEASUREMENT THE LEVEL OF PHYSICOCHEMICAL PARAMETER AND HEAVY METALS CONTENTS IN THE AGRICULTURAL SURFACE WATER

Only 1% from 70% of water that found on the Earth can be accessed directly by human for their consumption. However, modern agriculture practices may indirectly be one of the main surface water pollution source. There are two major types of sources of pollution that can be related to the agriculture practices which are point source pollution and non-point source (NPS) pollution. The aims of this study were to measure the level of physicochemical parameters and heavy metals contents in agricultural surface water samples and to classified the quality of water by using National Water Quality Standards (NWQS) and water quality index (WQI). Two sites were chosen as sampling locations which are Lubuk Yu and Lubuk Ujid, representing the agricultural surface water samples. For each site, the water samples were collected at three sampling points which was at a distance of 25 m. All the samples were measured for their in-situ and ex-situ physicochemical parameters and were followed standard methods. However, heavy metals contents in water sample were analysed using ICP-OES. The results for the level of physicochemical parameter obtained in this study shows that the both surface water samples can be classified in Class I where the water can be used for any purposes without major water treatment, except for DO level. The Fe was the highest metal concentration found in both water samples with 475 and 230 mg/L respectively. The concentration of heavy metals measured in this study follow the order of Fe > Zn > Mn > Pb > Ni > Cu > Cr = Cd for Lubuk Yu and Fe > Zn > Mn > Pb = Ni > Cu > Cr = Cd for Lubuk Jek. The water quality index, WQI for the Lubuk Yu and Lubuk Jek water samples were measured as 84 and 82 respectively and the water can be classified into Class II. The results indicated the both surface waters were clean, suitable to be as a recreation center for local and tourists, and also can be used as a water supply after minor treatment.

TABLE OF CONTENTS

		Page		
ACK	KNOWLEDGEMENT	iii		
TAB	TABLE OF CONTENTS			
LIST	LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS			
LIST				
LIST				
ABS	TRACT	ix		
ABS	TRAK	X		
CUA	APTER 1 INTRODUCTION			
1. 1	Background of study	1		
	Problem statement	4		
1. 3		5		
1. 4		6		
1. 7	Objectives of study	Q		
CHA	APTER 2 LITERATURE REVIEWS			
2.1	Significance of surface water	7		
2.2	Surface water quality	8		
2.3	Factors that polluted surface water in agricultural zone	13		
	2.3.1. Pesticides and surface water	14		
	2.3.2. Nitrogenous fertilizers application	16		
2.4	Contamination of heavy metals in surface water	18		
CHA	APTER 3 METHODOLOGY			
3.1	Apparatus	19		
3.2	Chemicals	20		
3.3		20		
3.4	Sample collection and storage	20		
3.5	In-situ analysis	21		
3.6	Ex-situ analysis	21		
3.0	3.6.1. Nesslerization method for NH ₃ -N	22		
	3.6.2. Close reflux, colorimetric method for COD	23		
	3.6.3. Repirometric method for BOD	23		
	3.6.4. Total suspended solid (TSS)	24		
3.7	Data analysis	25		
3.7	3.7.1. Classification of physicochemical parameter	25		
	3.7.2. WQI calculation	25		
	J. 7.2. W QI CHICHIAHOH	23		

CHA	PTER 4 RESULTS AND DISCUSSION	
4.1.	Physicochemical parameter	27
	4.1.1 In-situ parameter	27
	4.1.2 Ex-situ parameter	30
4.2.	Heavy metals analysis	34
4.3.	Estimation of water quality index	36
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS Conclusion and recommendations		
CITI	ED REFERENCES	39
APP	ENDICES	46
CUR	RICULUM VITAE	47

LIST OF TABLES

Table	Caption	Page
1.1	Contribution of agriculture sector to Malaysia's economy	2
2.1	Physicochemical characteristics	10
2.2	WQI value with the respect of water condition	10
2.3	National Water Quality Standards (NWQS) for Malaysia and	11
	DOE Water Quality Index classification	
2.4	Water quality classes and uses	11
2.5	Water quality results of Liwangu River	12
4.1	In-situ data for Lubuk Yu and Lubuk Ujid (in triplicate)	27
4.2	Ex-situ data for Lubuk Yu and Lubuk Ujid (in triplicate)	30
4.3	Heavy metals data for Lubuk Yu and Lubuk Ujid	34