AQUATIC PLANTS AS BIOINDICATOR FOR WATER POLLUTION

NUR ATHIRAH BINTI MAZLAN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology In The Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

AQUATIC PLANTS AS BIOINDICATOR FOR WATER POLLUTION

Water is one of the important substance that is needed by living organisms. Therefore, water pollution should be prevented. Bioindicator is consider as an animal or plants which accumulate contaminants in their tissue and organs from their surroundings. The objectives of this study were to determine the quality of water sample based on pH, DO and BOD, to investigate the potential of aquatic plants as bioindicator for water pollution and to determine the cytotoxicity effect of selected plants. The water samples were collected from three different rivers nearby Jengka's Town. Both aquatic plants were collected from the pond in UiTM. The DO values were determined first to get the BOD values for water quality determination. The morphology of plants was measured based on qualitative and quantitative parameter. For cytology study, histology technique was used to determine the cytotoxicity effect of selected aquatic plants in polluted water samples. Limnocahris flava and Ipomea aquatica were aquatic plants used in this study. The result showed water sample from Jengka's River had higher BOD value which was 2.156 mg/L. For the pH, Jengka's River also got higher value which indicate less acidity. The morphology of Limnocharis flava and Ipomea aquatica does showed some changes in term of stem and root diameter, leaves counting and colour of leaves and roots, and of. The number of chromosome for Limnocharis flava for treatment A was 2(n) = 12 and treatment C was 2(n) = 20. For Ipomea aquatica, treatment B and C, the number of chromosome were 2(n) = 38 and 2(n)= 14 respectively. The number of chromosome differ to theory due to the composition in the water treatment. As conclusion, Limnocharis flava showed excellent potential compared to Ipomea aquatica as a bioindicator for water pollution.

TABLE OF CONTENTS

			PAGE
ACI	KNOWLEDGEMENTS		iii
TAI	BLE OF CONTENTS		iv
LIS	T OF TABLES		vi
LIS	T OF FIGURES		viii
ABS	STRACT		X
ABS	STRAK		ix
CII	ADTED 1. INTRODUCTION		
	Poskeround Study		· 1
1.1	Background Study Brahlam Statement		1
1.2	Significance of the Study		2
1.5	Objectives of the Study		2
1.4	Objectives of the Study		3
CH	APTER 2: LITERATURE REVIEW		98 22 100
2.1	Introduction to Water		4
2.2	Bioindicator		7
	2.2.1 Ipomea aquatica	5	9
	2.2.2 Limnocharis flava	21	10
2.3	Histological Study		12
	2.3.1 Sample and treatment		12
	2.3.2 Cytogenetic study		13
CH	APTER 3: METHODOLOGY		-
3.1	Materials		17
	3.1.1 Raw materials		17
	3.1.2 Chemicals		17
	3.1.3 Apparatus		18
3.2	Methods		18
	3.2.1 Water collection		18
	3.2.2 Dissolved oxygen (DO)	4	19
	3.2.3 Biochemical Oxygen Demand (BOD)		20
	3.2.4 pH		21
	3.2.5 Plant collection		22
	3.2.6 Growing plants in water sample		22
	3.2.7 Histological study		23
	3.2.8 Chromosome identification		24

CHA	APTER 4: RESULT AND DISCUSSION	
4.1	Water testing	25
4.2	Morphology of aquatic plants	27
	4.2.1 Limnocharis flava	27
	4.2.2 Ipomea aquatica	34
4.3	Chromosome determination of aquatic plants	40
	4.3.1 Limnocharis flava	40
	4.3.2 Ipomea aquatica	44
4.4	Experimental problem	47
CHA	APTER 5: CONCLUSION AND RECOMMENDATIONS	49
CITI APP CUR	ED REFERENCES ENDICES RICULUM VITAE	51 55 57

v

LIST OF TABLES

TABLE 2.1	TITLE Water index quality	PAGE 5
2.2	Normal composition of untreated domestic wastewater	5
2.3	Odorous compound associated with untreated wastewater	6
4.1	pH of water sample from three differences river	25
4.2	DO and BOD reading from three difference water sample	26
4.3	Leaves counting of <i>Limnocharis flava</i> with different water samples	28
4.4	Colour changes of leaves <i>Limnocharis flava</i> with different water samples	29
4.5	Stems diameter of <i>Limnocharis flava</i> with different water samples	30
4.6	Growth performance of <i>Limnocharis flava</i> with different water samples	31
4.7	Colour changes of roots <i>Limnocharis flava</i> with different water samples	31
4.8	Roots texture of <i>Limnocharis flava</i> with different water samples	33
4.9	Leaves counting of <i>Ipomea aquatica</i> with different water samples	35
4.10	Colour changes of leaves <i>Ipomea aquatica</i> with different water samples	35
4.11	Stems diameter of <i>Ipomea aquatica</i> with different water samples	36
4.12	Growth performance of <i>Ipomea aquatica</i> with different water samples	37