SINGLE-FREQUENCY SOUND WAVE DELAYS TOMATO (Solanum lycopersicum) RIPENING BY SUPPRESSING RESPIRATION AND REGULATES LYCOPENE

MUHAMMAD AFIQ BIN AZMAN

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

1 KHZ SOUND WAVE TREATMENT DELAYS RIPENING AND REDUCES RESPIRATION RATE

Tomato had become one most consumed and utilized fruit. Tomatoes are cultivated, harvested and commercialized on a wide scale all over the world. This poses the question "Would the tomatoes last long?" Fresh tomatoes place on a counter would only last for a week and extended for another week if stored in refrigerator at 23°C. The onset of senescence is triggered by ripening process. Ripening process in turn triggered by multitude of factors. The major factor known is the initiation of ethylene biosynthesis. The accumulation of ethylene would trigger multiple enzymatic processes along with multiple protein synthesis. The transition of chloroplasts into chromoplasts is driven by enzymatic action that results in the loss of green coloration among tomatoes. Carotenoids on the other hand are the main coloration pigments that give the orange and red coloration to tomatoes. Single-frequency sound wave at 1 kHz as the treatment agent of the project proved to have delays ripening process when applied to a group of tomatoes. The results showed a noticeable different between controlled group and treated group. The color transitions from green to red of the tomatoes were considerably slower in treated group during the whole period of 15 days. The sound wave treatment also reduces the respiration rate of tomatoes as the headspace gas sample analyzed revealed that the amount of CO₂ was lower in the gas sample of treated group. The GC test showed those treated groups only have 0.39886% CO₂ content out of 50 mL gas sample taken. In contrast, controlled group's CO₂ content was 1.27148% with the same volume of gas sample. The result obtained proved that single-frequency sound wave at 1 KHz was capable of delaying ripening process as well as reducing respiration rate in tomatoes.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK		iii iv vi vii viii x xi	
СНА	PTER 1: INTRODUCTION		
1.1	Background Study	1	
1.2		2	
1.3	Significance of Study	3	
1.4	Objectives of the Study	3	
CHA	PTER 2: LITERATURE REVIEW		
2.1	Tomato (Solanum lycopersicum)	4	
	2.1.1 Lycopene	5	
2.2	Gas Chromatography System	6	
CHA	PTER 3: METHODOLOGY		
3.1	Materials	9	
	3.1.1 Raw materials	9	
	3.1.2 Apparatus	9	
3.2	Methods	11	
	3.2.1 Sample collection	11	
	3.2.2 Sound wave treatment	11	
	3.2.3 Gas chromatography	13	
3.3	Analysis	14	
	3.3.1 Qualitative analysis	14	
	3.3.2 Quantitative analysis	15	
	3.3.2.1 Color distribution	15	
	3.3.2.2 Chromatogram	15	
CHA	PTER 4: RESULTS AND DISCUSSION		
4.1	Qualitative Analysis	17	
	4.1.1 Phenotypic changes	18	
4.2	Quantitative Analysis	22	
	4.2.1 Color distribution	22	
	4.2.2 Chromatogram analysis	2	
4.3	Problems	29	
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 31			

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	GC analysis parameters and setting values	13
4.1	Tomato skin color description	17
4.2a	Color distribution of tomatoes in the control group	23
4.2b	Color distribution of tomatoes in the treatment group	24
4.3	Analysis of standard gas components	27
4.4a	GC analysis of gas sample taken from control group	28
4.4b	GC analysis of gas sample taken from treatment group	29

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Agilent 7890A GC system connected to a PC	7
2.2	Sketch of GC system set-up	8
3.1	Apparatus used in the project	10
3.2	Sound wave treatment setup	12
3.3	Tomato colors chart	14
3.4	Simple chromatogram plot	16
4.1	Tomato color changes over the span of 15 days	18
4.2a	Color distribution of tomatoes in the control group	25
4.2b	Color distribution of treated tomatoes	25
4.3	Gas components in standard air sample	27
4.4a	Gas components in gas sample taken from control group	28
4.4b	Gas components in gas sample taken from treatment group	28