UNIVERSITI TEKNOLOGI MARA

DETECTION OF PERMEABILITY OF HYDROCARBON CONTAMINATION IN SUBSURFACE USING ELECTROMAGNETIC WAVE

NORLAILA HANIM BINTI SALMAN

Disertation submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

July 2018

AUTHOR'S DECLARATION

I declare that the work in this disertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Norlaila Hanim Binti Salman
Student I.D. No.	:	2014457368
Programme	:	Degree of Surveying Science and Geomatics (Hons) – AP220
Faculty	:	Architecture, Planning and Surveying
Thesis	:	Investigation of Hydrocarbon Contamination Soil Plume using Electromagnetic Wave
Signature of Student	:	

Date : July 2018

ABSTRACT

Subsurface contaminated by hydrocarbon is a pressing environmental issue with many industrial sites having some degree of near-surface pollution. The aim of the research is to investigate spectral content of GPR signal attenuation and scattering within the hydrocarbon contaminated site and to analyse the parameters of GPR. Non-invasive method, Ground Penetrating Radar (GPR), have been used widely. Their uses have tended to be restricted to plume mapping and contamination. GPR is an electromagnetic system used in non-destructive investigation of subsurface. It is based on the emission by an antenna coupled to the ground, of short electromagnetic pulses of harmonic waves sweeping a certain frequency band. In this research, the simulation of radar signals GPR, using Reflexw. The operation of this research is based on the investigation of hydrocarbon contaminated soil plume using electromagnetic wave by determining the parameters of GPR which is dielectric constant, permittivity, and permeability. The simulation has been performed on contaminated soil and it led to find that the electromagnetic waves are very sensitive to variations in the dielectric permittivity and electrical conductivity. The graphs produce in this thesis are used to simulate the real subsurface conditions, a comparison between the GPR response of clean and contaminated areas where the subsurface material contains and not contains hydrocarbon contaminants. The result shown contaminated material and noncontaminated material all exhibit different. Thus, GPR should be able to detect the signals for soil with and without contaminants. The spectral GPR responses and the recorded data can provide overview of the contaminant distribution.

TABLE OF CONTENT

CON	FIRMATION BY PANEL OF EXAMINERS	ii
AUT	iii	
ABS	iv	
ACK	v	
TAB	vi	
LIST	OF TABLES	ix
LIST	OF FIGURES	X
LIST	OF PLATES	xi
LIST	OF SYMBOLS	xii
LIST	xiii	
LIST	xiv	
СНА	PTER ONE: INTRODUCTION	2
1.1	Research Background	2
1.2	Research Gap	2
1.3	Problem Statement	4
1.4	Aim	5
1.5	Objective	5
1.6	Research Question	5
1.7	Research Methodology	5
1.8	Thesis Structure	6
1.9	Significanr of Study	6
1.10	Summary	7
СНА	PTER TWO: LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Ground Penetrating Radar (GPR)	8
2.3	Physical Properties of Soil	10

	3.5.2.	l Determination of Dielectric Permittivity of Soil	34	
	3.5.2.2 Determination of Conductivity of Soil			
	3.5.2.	3 Determination of Permeability of Soil	36	
	3.5.3	Accuracy Analysis of Subsurface Conditions	37	
	3.5.3.2	2 RMS Velocity	37	
	3.5.3.2	2 Normalized Root Mean Square Error (NRMSE)	37	
3.6	Summ	ary	38	
СНА	PTER I	OUR: RESULTS AND ANALYSIS	39	
4.1	Introd	uction	39	
4.2	Deterr	nination of Physical Properties of GPR	39	
	4.2.1	Value if Dielectric Permittivity for Uncontaminated and Contamin	nated	
		Soil	40	
	4.2.2	Value if Conductivity for Uncontaminated and Contaminated Soil	41	
	4.2.3	Value if Permeability for Uncontaminated and Contaminated Soil	43	
4.3	Accur	acy Analysis of Subsurface Conditions	45	
	4.3.1	RMS Velocity	46	
	4.3.2	Normalized Root Mean Square Error (NRMSE)	47	
4.4	Summ	ary	47	
СНА	PTER I	FIVE: CONCLUSION	48	
4.1	Introduction			
4.1	Limitation of Study		48	
4.1	Recon	nmendation	49	
REFI	REFERENCES			
APPI	ENDICI	ES	52	