UNIVERSITI TEKNOLOGI MARA

ACCURACY ASSESSMENT OF NON-METRIC DIGITAL CAMERA FOR LAB AND FIELD CALIBRATION

MUHAMMAD HAZIQ MUZAINI B. KAMARUZAMAN

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

July 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Muhammad Haziq Muzaini b. Kamaruzaman
Student I.D. No.	:	2015299148
Programme	:	Bachelor of Surveying Science and Geomatics (Hons.) – AP220
Faculty	:	Architechture, Planning and Surveying
Thesis	:	Accuracy Assessment of Non-Metric Digital Camera For Lab and Field Calibration
Signature of Student	:	
Date	:	July 2018

ABSTRACT

In surveying field, the most important thing that need to be focus is accuracy, whether it is in engineering survey or in photogrammetry survey. In order to provide the best and accurate result, the most important thing is the instruments must be in a good condition. In photogrammetry, the camera that use to capture image, need to be calibrate. The camera is considered calibrated when the focal length (f), coordinate of the centre of projection of the image (xp,yp) and radial lens distortion coefficient (k1,k2,k3) are known. Camera calibration techniques can be divided into two broad categories that are metric scene based calibration and non- metric scene based calibration. The aim of this study to analyze the accuracy of lab test camera calibration and field test camera calibration quantitatively. There are three objectives in order to complete this study, first is to perform lab test camera calibration and field test camera calibration, second to examine the accuracy between lab test and field test camera calibration and third is to compare the calibration parameter between lab test and field test. The result of this study will be tested for statistical significance. The significance of this study are to show the procedure for camera calibration in UAV mapping, development of medium range calibration platform for UAV camera and proving which method of camera calibration gives the accurate result.

TABLE OF CONTENT

CON	NFIRMA	ATION BY PANEL OF EXAMINERS	ii
AUT	THOR'S	DECLARATION	iii
CON	NFIRMA	ATION BY PANEL	iv
ABS	TRACT		V
ABS	TRAK		vi
ACH	KNOWL	EDGEMENT	vii
TAE	BLE OF	CONTENT	viii
LIS	Г OF TA	ABLES	xii
LIST OF FIGURES		xiii	
CHA	APTER	ONE INTRODUCTION	1
1.1	Resea	rch Background	1
1.2	Proble	em Statement	2
1.3	Aim a	and Objectives	3
1.4	Gener	al Methodology	3
1.5	Study	Area	4
1.6	Signif	ficant of Study	4
1.7	Thesis Organization		5
1.8	Concl	usion	5
CHA	APTER '	TWO LITERATURE REVIEW	6
2.1	2.1 Introduction		6
2.2	Unma	nned Aerial Vehicle (UAV)	6
	2.2.1	Definition of UAV	6
	i.	Horizontal flying self-propelled fixed wing aircraft.	6
	ii.	Airships	7
	iii.	Multicopters	8
	2.2.2	Component of UAV	10
	i.	Frame	10
		viii	

	3.4.1 Photomodeler Scanner	32
	3.4.2 Australis Software	35
3.5	Result and Analysis	39
3.6	Summary	39

CHAPTER FOUR RESULTS AND ANALYSIS 40

4.1	Introduction	40
4.2	Comparison Using Difference In Scale Bar Measurement	40
4.3	Accuracy Of Calibration Plate	44
4.4	Hypothesis Test For X, Y and Z (t-test)	45
4.5	Computed Parameters	46
4.6	Parameter Test	50
4.7	Conclusion	52

CHAPTER FIVE CONCLUSION

5.1	Introduction	53
5.2	Summary of Findings	53
5.3	Recommendations	54
5.4	Final Remarks	54

53

55

58

REFERENCES

APPENDICES

Appendice A : Report for lab test camera calibration (Set1) Appendice B : Report for lab test camera calibration (Set2) Appendice C : Report for lab test camera calibration (Set3) Appendice D : Report for lab test camera calibration (Set4) Appendice E : Report for lab test camera calibration (Set5) Appendice F : Report for field test camera calibration (Set1) Appendice G : Report for field test camera calibration (Set2) Appendice H : Report for field test camera calibration (Set3) Appendice I : Report for field test camera calibration (Set4)