UNIVERSITI TEKNOLOGI MARA

EVALUATING AND IMPROVING THE ACCURACY OF LOCAL GEOID MODEL IN PERLIS REGION

MOHD IZWAN SYAZWAN BIN MOHAMAD

Thesis submitted in fulfillment of the requirements for the degree of **Surveying Science and Geomatic (Hons)**

Faculty of Architecture, Planning & Surveying

July 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohd Izwan Syazwan Bin Mohamad
Student I.D. No.	:	2015834374
Programme	:	Bachelor of Surveying Science & Geomatics (Hons) – AP220
Faculty	:	Architecture, Planning and Surveying
Thesis	:	Evaluating And Improving The Accuracy Of Local Geoid Model In Perlis Region
Signature of Student	:	
Date	:	July 2018

ABSTRACT

Geoid is vital information in the determination of orthometric height via GNSS levelling. Based on the ellipsoidal height observed by GNSS, the accurate orthometric height can be easily computed by adding precise and accurate geoid model information. This will particularly enable the users to replace the traditional orthometric height determination techniques to become faster and more cost effective. Currently, in Malaysia is consist two local geoid model that is MyGEOID04 are develop by DSMM using RCR method while PMSGM2014 are successfully establish by (sulaiman,2016) by using Least Square modification of Stokes' approach also known KTH method. The both of the geoid model are has not been technically tested on the accuracy of the northern regions of Malaysia, especially in the state of Perlis. The main purpose of this study is to evaluate the local geoid model in absolute method and relative method by using static GPS observation data on selected BM / SBM. This evaluation is very important to determine the level of accuracy that the model geoid can provide for work that requires the determination of orthometric height using the GPS method. In the evaluation of the geoid model, it is found that the model of KTH Fitted are provide the accuracy of RMSE ±0.0651m by using absolute method whilst model from MyGEOID Gravimetric provides higher precision value close to MSL compared to other models with the value of RMSE ± 0.0427 m by relative method. The ability of both geoid models to provide geoid value to higher accuracy enables both models to adjust by geoid fitting process using parameters 3, 4 and 7 of the Similarity Transformation Model. As a result of the geoid fitting process, the geoid value has improved to close to MSL. Accuracy that has been generated by the new geoid model fitted and tested using data from MyRTKnet GPS observations prove that the model from KTH 4P and Mygeoid 4P give the accuracy of the RMSE ± 0.0451 through absolute method. However, by using relative method model MyGEOID are given accuracy of the RMSE ±0.0479m compare to another geoid model.

TABLE OF CONTENT

CON	ii				
AUTI	HOR'S DECLARATION	iii			
SUPE	iv				
ABST	TRACT	\mathbf{V}			
ACK	NOWLEDGEMENT	vi			
TABI	LE OF CONTENT	vii			
LIST	OF TABLES	Х			
LIST	OF FIGURES	xi			
LIST	OF ABBREVIATIONS	xiii			
CHA	PTER ONE INTRODUCTION	14			
1.1	Research Background	14			
1.2	Problem Statement	17			
1.3	Aim and Objectives	19			
1.4	Scope of Study	19			
	1.4.1 Study Area	19			
	1.4.2 Data	20			
	1.4.3 Method	20			
1.5	Significance of study	20			
1.6	General Research Methodology	21			
1.7	Structure of Thesis	22			
CHA	PTER TWO LITERATURE REVIEW	23			
2.1	Introduction	23			
2.2	Height System Element	23			
	2.2.1 Orthometric Height	23			
	2.2.2 Geoid Height	24			
	2.2.3 Ellipsoidal Height	25			
2.3	Height Identification Technique				

	2.3.1	Precise Levelling	26		
	2.3.2	GNSS Levelling	28		
2.4	Heigh	t Modernization System in Malaysia	29		
	2.4.1	Malaysia Geoid Model (MyGEOID)	29		
	2.4.2	Peninsular Malaysia Geoid Model (PMGM2014)	31		
	2.4.3	Geoid Fitting	32		
СНА	PTER 1	THREE RESEARCH METHODOLOGY	34		
3.1	Introd	duction			
3.2	Data A	Data Acquisition			
	3.2.1	Precise levelling data	36		
	3.2.2	The Global Navigation Satellite System (GNSS) Points	37		
	3.2.3	CORS Station	38		
	3.2.4	Local geoid model	38		
3.3	Prelim	ninary Processing	40		
	3.3.1	GPS/Levelling Data Processing	40		
	3.3.2	Interpolation of the local geoid model	43		
	3.3.3	Computation of geometrical geoid value (Ngeo)	44		
	3.3.4	Evaluation of the accuracy local geoid model	44		
3.4	Data F	Data Processing46			
	3.4.1	Geoid Fitting By Using the Similarity Transformation Model (STM	A)46		
	3.4.2	Verification of the New Fitted Geoid Model	50		
3.5	Summ	hary	53		
СНА	PTER I	FOUR RESULTS AND ANALYSIS	54		
4.1	Introd	uction	54		
4.2	Deterr	nination of the Vertical Datum Bias between MyGEOID and			
	PMSC	GM2014 (KTH)	54		
4.3	Accur	Accuracy Assessment of the Local Geoid Model Using Absolute Method			
	4.3.1	Evaluation Root Square Linear (R ²) of MyGEOID Gravimetric	with		
		KTH Gravimetric and MyGeoid Fitted with KTH Fitted	56		
	4.3.2	Evaluation Residual of the Geoid Model	57		
4.4	Accur	acy Assessment of the Local Geoid Model Using Relative Method	60		