

STUDY THE EFFECT OF SPRING LENGTH ON VIBRATIONAL

CAPACITY OF AN AUTOMOBILE

FAIZUL AKMAL BIN AHMAD RODI (99083118) MOHD AZLAN BIN MOHD AISA (99083290) AZIZI BIN BAKAR (99083091)

A thesis submitted in partial fulfilment of the requirements for the award of Diploma of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

University Technology Of MARA

April 2003

Contents

Acknowledgement	1
Abstract	2
List of figure	
Chapter1: Introduction	3
1.1 Objective	
1.2 Project approach	
Chapter 2: Spring	5
2.1 Introduction	
2.2 Types of spring	
2.3 Sprung and unsprung weight	
2.4 Spring rate and frequency	
2.5 Wheel rate and frequency	
Chapter 3: Coil spring	14
3.1 Introduction	
3.2 Types of coil spring	
Chapter 4: spring Vibrations	17
4.1 Defining of vibration	
4.2 Displacement	
4.3 Velocity	
4.4 Acceleration	
4.5 Natural frequency	
4.6 Transmissibility	
4.7 Damping	

Chapter 5: Vehicles Vibrations

- 5.1 Ride and vibration
- 5.2 Excitation source
- 5.3 Road roughness
- 5.4 Tire/wheel assembly
- 5.5 Driveline excitation
- 5.6 Engine/transmission
- 5.7 Vehicle response properties

Chapter 6: Suspension

- 6.1 Introduction
- 6.2 Suspension stiffness
- 6.3 Suspension damping
- 6.4 Active control
- 6.5 Wheel hop resonance
- 6.6 Suspension non-linearities
- 6.7 Rigid body bounce/pitch motion
- 6.8 Bounce/pitch frequencies
- 6.9 Theory of suspension

Chapter 7: Discussion

- 7.1 Introduction
- 7.2 Effect of suspension changes
- 7.3 Interview with technical expert

Conclusion

Appendix

Reference

39

ABSTRACT

This final project is about the study on the effect of spring length on vibration capacity of an automobile. Chapter one is the introduction on general information of automotive suspension system and the project approach. Chapter two gives a basic description on automotive spring and their functions. Chapter three explains about the detail on automotive coil spring. In Chapter four, we explain about the spring vibrations in theory. Chapter five explains information about vehicle vibrations. In chapter six we explain about the theory of suspension. Chapter seven explains about the project discussion. Finally, we explain about the conclusion of the project.

List of figure

Figure 2.1: Leaf Spring	7
Figure 2.2: Leaf Spring With The Parts Name	8
Figure 2.3: The Torsion Bar	9
Figure 2.4: Two Types Of Air Spring	10
Figure 2.5: Tree Position Of Air Spring When It's Working	11
Figure 3.1: The Coil Spring With The Different Types Of Ends	15
Figure 3.2:Two Types Of Coil Spring	16
Figure A1; Coil spring	38
Figure A2; Shock absorber	39
Figure A3; McPherson's strut unit	40
Figure A4; Front suspension system	41
Figure A5; Rear suspension system	42